删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

氧化石墨烯改性PVDF/PET复合膜的制备及其抗污染性能

本站小编 Free考研考试/2021-12-31

李青青1,,
朱振亚1,2,
王磊1,
姜家良1,
徐亚伟1
1.西安建筑科技大学环境与市政工程学院,陕西省膜分离技术研究院,陕西省膜分离重点实验室,西安 710055
2.河北地质大学水资源与环境学院,河北省水资源可持续利用与开发重点实验室,石家庄 050031
基金项目: 陕西省重点科技创新团队计划(2017KCT-19-01)
陕西省重点产业链(群)项目(2017ZDCXL-GY-07-02)




Preparation and antifouling performance of graphene oxide modified PVDF/PET composite membrane

LI Qingqing1,,
ZHU Zhenya1,2,
WANG Lei1,
JIANG Jialiang1,
XU Yawei1
1.Key Laboratory of Membrane Separation of Shaanxi Province, Research Institute of Membrane Separation Technology of Shaanxi Province, School of Environmental & Municipal Engineering, Xi′an University of Architecture and Technology, Xi′an 710055, China
2.Key Laboratory of Water Resources Sustainable Use and Development of Hebei, School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China

-->

摘要
HTML全文
(0)(0)
参考文献(26)
相关文章
施引文献
资源附件(0)
访问统计

摘要:采用PET编织管作为复合膜的结构层,将PVP和氧化石墨烯(GO)分别作为制孔剂和改性剂与PVDF基材混合,通过涂覆-浸没凝胶相转化法制备得到具有亲水性的高强度PVDF/PET编织管复合膜。观察复合膜的断面结构和表面形貌,测定其纯水通量、表面基团以及接触角等性能参数,并将不同浓度GO改性复合膜应用于序批式膜生物反应器(SMBR)中。利用原子力显微镜(AFM)及自制的污染物胶体探针测定了溶解性微生物产物(SMP)与膜面之间的微观作用力,考察改性复合膜的抗污染特性。在40 d的反应器运行实验中,GO改性复合膜的清洗周期较改性前延长了20%~40%,该结果说明改性复合膜能够有效抑制膜面对污染物的吸附,且GO质量分数为0.5%时清洗周期最长。AFM测试结果显示,复合膜中GO质量分数为0.5%时,SMP与膜面之间的黏附力最小,抗污染能力最强。
关键词: 氧化石墨烯(GO)/
改性复合膜/
序批式膜生物反应器(SMBR)/
膜污染/
原子力显微镜(AFM)

Abstract:The poly(vinylidene fluoride) (PVDF)/PET composite membrane with high-strength and hydrophilicity was prepared by coating and immersion phase-inversion method. The PET fiber woven tube was used as supporting layer of the composite membrane. Polyvinylpyrrolidone (PVP) and graphene oxide (GO) were used as pore-forming agent and hydrophilization modifier, respectively. Cross-section structure and surface morphology were observed through SEM and AFM images, respectively. Other performance parameters including pure water flux, surface functional groups and contact angle were also determined. The modified composite membranes with different GO concentration were used in the sequencing membrane bioreactor (SMBR). To investigate the antifouling properties of the composite membrane further, the adhesion force between SMP and membrane surface were determined by atomic force microscope (AFM) equipped with self-made foulant probes. During 40 days running, the cleaning cycle of modified composite membrane was extended by 20% to 40%. The results showed that the modified composite membrane can effectively inhibit the adsorption of SMP on membrane surface. The longest cleaning cycle was obtained when the mass fraction of GO in the composite membrane was 0.5%. Also, the lowest adhesion force between SMP and modified composite membrane was observed through AFM test results, indicating the strongest antifouling ability.
Key words:graphene oxide (GO)/
modified composite membrane/
sequencing membrane bioreactor (SMBR)/
membrane fouling/
atomic force microscopy (AFM).

加载中
[1] 王旭东, 马亚斌, 王磊, 等.倒置 A2/O-MBR 组合工艺处理生活污水效能及膜污染特性[J].环境科学,2015,36(10):3743-3748
[2] BARRETO C M, GARCIA H A, HOOIJMANS C M, et al.Assessing the performance of an MBR operated at high biomass concentrations[J].International Biodeterioration & Biodegradation,2017,119:528-537
[3] SONG K G, CHO J, CHO K, et al.Characteristics of simultaneous nitrogen and phosphorus removal in a pilot-scale sequencing anoxic/anaerobic membrane bioreactor at various conditions[J].Desalination,2010,250(2):801-804
[4] HONG S P, BAE T H, TAK T M, et al.Fouling control in activated sludge submerged hollow fiber membrane bioreactors[J].Desalination,2002,143(3):219-228
[5] CHUA H C, ARNOT T C, HOWELL J A.Controlling fouling in membrane bioreactors operated with a variable throughput[J].Desalination,2002,149(1/2/3):225-229
[6] JIANG T, KENNEDY M D, GUINZBOURG B F, et al.Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism[J].Water Science and Technology,2005,51(6/7):19-25
[7] ZHANG J M, CHUA H C, ZHOU J, et al.Factors affecting the membrane performance in submerged membrane bioreactors[J].Journal of Membrane Science,2006,284(1/2):54-66
[8] IVANOVIC I, LEIKNES T O.The biofilm membrane bioreactor (BF-MBR):A review[J].Desalination and Water Treatment,2012,37(1/2/3):288-295
[9] ZHU Z Y, JIANG J L, WANG X D, et al.Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particle[J].Chemical Engineering Journal,2017,314:266-276
[10] ZHU Z Y, WANG L, XU Y W, et al.Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection[J].Journal of Colloid & Interface Science,2017,504:429-439
[11] RONG Z Y, WANG L, CHEN L C, et al.The effect of PVDF concentration on PVDF/woven tube composite membranes and the application of composite membranes in SMBR[J].Desalination and Water Treatment,2014,52(25/26/27):5052-5060
[12] CHANG X J, WANG Z X, QUAN S, et al.Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride)(PVDF) ultrafiltration membrane performance[J].Applied Surface Science,2014,316(1):537-548
[13] ZHANG D Q, TRZCINSKI A P, KUNACHEVA C, et al.Characterization of soluble microbial products (SMPs) in a membrane bioreactor (MBR) treating synthetic wastewater containing pharmaceutical compounds[J].Water Research,2016,102:594-606
[14] JONES K L, O′MELIA C R.Ultrafiltration of protein and humic substances: Effect of solution chemistry on fouling and flux decline[J].Journal of Membrane Science,2001,193(2):163-173
[15] LEE Y, CHO J, SEO Y, et al.Modeling of submerged membrane bioreactor process for wastewater treatment[J].Desalination,2002,146(1):451-457
[16] ROSENBERGER S, LAABS C, LESJEAN B, et al.Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment[J].Water Research,2006,40(4):710-720
[17] HUMMERS W S, OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339
[18] 张颖,王磊,容志勇,等.高强度PVDF-PET编织管改性复合膜的制备及其性能研究[J].膜科学与技术,2014,34(3):69-73
[19] 吕晓龙,马世虎,陈燚.一种多孔分离膜孔径及其分布的测定方法[J].天津工业大学学报,2005,24(2):6-8
[20] MIAO R, WANG L, WANG X D, et al.Preparation of a polyvinylidene fluoride membrane material probe and its application in membrane fouling research[J].Desalination,2015,357:171-177
[21] WANG G X, YANG J, PARK J, et al.Facile synthesis and characterization of graphene nanosheets[J].Journal of Physical Chemistry C,2008,112(22):8192-8195
[22] ZHENG X L, XU Q, HE L H, et al.Modification of graphene oxide with amphiphilic double-crystalline block copolymer polyethylene-b-poly(ethylene oxide) with assistance of supercritical CO2 and its further functionalization[J].Journal of Physical Chemistry B,2011,115(19):5815-5826
[23] YU L Y, XU Z L, SHEN H M, et al.Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method[J].Journal of Membrane Science,2009,337(1/2):257-265
[24] SAFARPOUR M, KHATAEE A, VATANPOUR V.Effect of reduced graphene/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes[J].Separation & Purification Technology,2015,140:32-42
[25] WANG L, MIAO R, WANG X D, et al.Fouling behavior of typical organic foulants in polyvinylidene fluoride ultrafiltration membranes:Characterization from microforces[J].Environmental Science and Technology,2013,47(8):3708-3714
[26] DREWS A, MANTE J, IVERSEN V, et al.Impact of ambient conditions on SMP elimination and rejection in MBRs[J].Water Research,2007,41(17):3850-3858



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:2059
HTML全文浏览数:1701
PDF下载数:288
施引文献:0
出版历程

刊出日期:2018-01-14




-->








氧化石墨烯改性PVDF/PET复合膜的制备及其抗污染性能

李青青1,,
朱振亚1,2,
王磊1,
姜家良1,
徐亚伟1
1.西安建筑科技大学环境与市政工程学院,陕西省膜分离技术研究院,陕西省膜分离重点实验室,西安 710055
2.河北地质大学水资源与环境学院,河北省水资源可持续利用与开发重点实验室,石家庄 050031
基金项目: 陕西省重点科技创新团队计划(2017KCT-19-01) 陕西省重点产业链(群)项目(2017ZDCXL-GY-07-02)
关键词: 氧化石墨烯(GO)/
改性复合膜/
序批式膜生物反应器(SMBR)/
膜污染/
原子力显微镜(AFM)
摘要:采用PET编织管作为复合膜的结构层,将PVP和氧化石墨烯(GO)分别作为制孔剂和改性剂与PVDF基材混合,通过涂覆-浸没凝胶相转化法制备得到具有亲水性的高强度PVDF/PET编织管复合膜。观察复合膜的断面结构和表面形貌,测定其纯水通量、表面基团以及接触角等性能参数,并将不同浓度GO改性复合膜应用于序批式膜生物反应器(SMBR)中。利用原子力显微镜(AFM)及自制的污染物胶体探针测定了溶解性微生物产物(SMP)与膜面之间的微观作用力,考察改性复合膜的抗污染特性。在40 d的反应器运行实验中,GO改性复合膜的清洗周期较改性前延长了20%~40%,该结果说明改性复合膜能够有效抑制膜面对污染物的吸附,且GO质量分数为0.5%时清洗周期最长。AFM测试结果显示,复合膜中GO质量分数为0.5%时,SMP与膜面之间的黏附力最小,抗污染能力最强。

English Abstract






--> --> --> 参考文献 (26)
闂傚倷娴囧畷鐢稿窗閹邦優娲箣閿旇棄鈧潡鏌ㄩ弮鍌涙珪闁绘繆鍩栭幈銊ヮ渻鐠囪弓澹曢梻浣侯攰濞呮洟骞戦崶褏鏆︽慨妞诲亾妞ゃ垺妫冨畷鍗炍旈崘銊ョ闂傚倸鍊风粈渚€宕ョ€n亶鐔嗘慨妞诲亾鐎规洦鍨堕、鏇㈠閵忊剝顔曢梻渚€娼ч¨鈧┑鈥虫喘閸┿垽寮崼鐔哄幍闂佺顫夐崝鏇㈡儍濞差亝鐓熼柣鏃堫棑缁夋椽鏌熼鑲╃Ш鐎规洘鍎奸ˇ鏌ユ煃闁垮鈷愮紒缁樼箞閸┾偓妞ゆ帒瀚悞娲煕閹邦垱纭堕柣顓燁殔閳规垿鍩ラ崱妤冧化缂佺虎鍘奸悥鐓庣暦閹达箑绠婚悗闈涙憸閹虫繈姊洪柅鐐茶嫰婢ф挳鏌曢崱妤€鈧潡骞婇悙鍝勎ㄩ柨鏇楀亾闁告柨鎳樺娲捶椤撶偘澹曟繝鈷€鍐弰鐎规洘鍨块獮妯尖偓娑櫭鎾剁磽娴e湱鈽夋い鎴濇缁辩偞绻濋崘褏绠氬銈嗗姂閸婃洟銆傛總鍛婄厱闁宠桨绶ら崝鐔镐繆閸欏濮嶇€规洖缍婇、鏇㈡晲閸曨剙鏀┑鐘垫暩閸嬫稑螞濞嗘挸绠扮紒瀣氨閺嬪秹鏌ㄩ悢鍝勑i柛瀣剁悼閹茬ǹ顓奸崶锝呬壕婵ḿ鍘ч獮姗€鏌ゅú顏冩喚妞ゃ垺鐟╅幃娆擃敆娴gǹ濮庨梻鍌欑閹测剝绗熷Δ鍛偍闁绘挸瀵掗崵鏇㈡煕瑜庨〃鍡涙偂閵夛妇绠鹃柟瀵稿剱濞堟ɑ銇勯敂濂告缂佺粯绻堥崺鈧い鎺戝閺佸倿鏌涢埄鍐噭闁挎稑绻樺娲礈閼碱剙甯ラ梺鍝ュУ閻楁粓寮鈧獮搴ㄦ嚍閵夈儰鍖栭梻浣哥秺閸嬪﹪宕滃☉姘辩煋闁绘垶眉缁诲棝鏌熺紒妯虹瑨妞ゅ浚鍋婇弻鐔割槹鎼粹寬锝夋倵閻㈤潧甯堕柍璇查叄楠炲鎮崨顖氱哎
2濠电姷鏁搁崑鐐哄垂閸洖绠扮紒瀣紩濞差亜惟闁冲搫顑囩粙蹇涙⒑閸︻厼鍔嬫い銊ユ瀹曠敻鍩€椤掑嫭鈷戦柛娑橈工婵箑霉濠婂懎浠辩€规洘妞介弫鎾绘偐瀹曞洤骞橀梻浣告惈椤︻垶鎮樺┑瀣辈婵炲棙鍨熼崑鎾舵喆閸曨剛锛橀梺绋挎捣閺佸鐛崘鈺冾浄閻庯綆鍋掑Λ鍐ㄢ攽閻愭潙鐏︾痪鏉跨Ч楠炲濡堕崱娆戭啎闂佺懓顕崑鐐核夐弽顓熷仯濞撴艾锕﹂幃鍏间繆閸欏濮囬柍璇查叄楠炲洭宕滄担铏瑰幀濠电姷顣藉Σ鍛村垂闂堟稈鏋嶉柨婵嗘媼濞尖晠鏌曟繛鐐珕闁绘挸绻橀弻娑㈠焺閸愨晝顦ㄧ紓浣疯兌婢ф濡甸崟顖f晝闁靛繆鏅涢崜閬嶆⒑閹稿海鈯曢柛鏃€鐟╅悰顔锯偓锝庝簴閺嬪酣鎮橀悙鏉戠亰濠㈣娲樼换娑欐綇閸撗勫仹闁哄浜為埀顒侇問閸犳牠鎮樺┑瀣厴闁硅揪绠戠壕鍏肩箾閹达綁鍝洪柣锝囨櫕缁辨挻鎷呮搴ょ獥闂佺ǹ顑呴敃銈夘敋閿濆鏁嗛柍褜鍓熼崺銏℃償閳锯偓閺嬪酣鏌熺€电ǹ顎屾俊鍙夋尦濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鐢稿极閸愵喖围闁告粈绀侀弲鐘崇節閻㈤潧校婵ǜ鍔岄悾鍨瑹閳ь剟骞冨Δ鍛棃婵炴垶鐟ラ弳鍫ユ⒑缁洘娅呴柛濠冪摃閻忓姊虹紒姗嗘當闁绘鍋ゅ畷妤咁敆閸屾粎锛滈柡澶婄墑閸斿海绮婚幘缁樼厓闁芥ê顦藉Ο鈧梺璇″枙缁瑥鐣疯ぐ鎺濇晝闁靛牆绻掗惌锟�547闂傚倸鍊风粈浣革耿闁秲鈧倹绂掔€n亞锛涢梺鐟板⒔缁垶鍩涢幒妤佺厱闁哄洦顨嗗▍鍛存煟韫囷絼閭柡宀嬬到铻栭悗锝庡亜椤忥拷4濠电姷鏁搁崑鐐哄垂閸洖绠扮紒瀣紩濞差亝鏅查柛銉㈡櫇椤︻垶姊洪悷閭﹀殶闁稿鍠栭崺銏ゅ籍閳ь剟濡甸崟顔剧杸闁规儳顕ˇ閬嶆⒑缁嬫鍎愰柟鐟版搐閻e嘲顫滈埀顒勩€侀弮鍫濆耿婵°倕鍟獮鎰版⒒閸屾瑧顦﹂柛姘儏椤灝顫滈埀顒€鐣烽鐑嗘晝闁靛繈鍨哄▓楣冩⒑闂堟侗妾у┑鈥虫喘閸┿垽寮崼鐔哄幍闂佺顫夐崝鏇㈡儍濞差亝鐓熼柣鏃堟敱鐠愶紕绱掓潏銊ョ瑲鐎垫澘瀚埀顒婄秵娴滅偞绂掗悡搴樻斀闁绘劘娉涚槐锕傛煕濡ゅ嫭鐝ǎ鍥э功閳ь剚绋掕摫濠殿垱鎸抽幃宄扳枎濞嗘垵鍩屾繛瀛樼矒缁犳牠寮诲☉銏犵疀闁稿繐鎽滈弫鏍⒑缁洘娅旂紒缁樼箞瀵鈽夊⿰鍛澑闂佹寧绻傞幊搴綖閳哄懏鈷戦柛娑橈功閹虫洜绱掓潏銊︾妤犵偛绻橀幃鈺冩嫚閼碱剦鍟嬮梻浣告啞娓氭宕归幎鍓垮洭鍩¢崨顔规嫼闁荤偞绋堥埀顒€鍘栨竟鏇㈡⒒娴e憡璐¢弸顏嗙磼閵娿劌浜圭紒顕呭幗瀵板嫰骞囬鐘插箻闂備礁鎼€氼剛鎹㈤幒鏃囧С闁圭ǹ绨烘禍婊堟煛閸ヮ煁顏堟倶閼碱兘鍋撳▓鍨珮闁稿锕ら锝囨崉鐞涒剝鐎婚梺璇″瀻閸忎勘鍊濆缁樻媴閻熼偊鍤嬬紓浣割儐閸ㄨ儻妫熷銈嗘尪閸ㄥ綊鎮為崹顐犱簻闁圭儤鍩婇弨濠氭倵濮樼偓瀚�40缂傚倸鍊搁崐椋庣矆娓氣偓钘濇い鏍ㄧ矌閻挾鈧娲栧ú銊х不閺冨牊鐓欓柟顖嗗苯娈堕梺宕囩帛濮婂綊骞堥妸銉建闁逞屽墰濞戠敻骞栨担鍛婄€柣搴秵娴滃爼鎮㈤崱娑欏仯闁搞儻绲洪崑鎾诲礂閸涱収妫滅紓鍌氬€峰ù鍥ㄣ仈閹间焦鍋¢柍鍝勬噹閽冪喓鈧厜鍋撻柛鏇ㄥ亞椤撴椽姊洪幐搴g畵婵炶尙濞€瀹曟垿骞樼紒妯诲劒闁荤喐鐟ョ€氼剟宕㈣ぐ鎺撯拺闁告繂瀚婵嬫煕鎼淬垹鐏╂俊鍙夊姇楗即宕奸悢鍝勫妇闂備胶纭堕崜婵喢洪弽顐ュС缂侇偄瀵梻鍌氬€风欢姘缚瑜嶈灋闁哄啫鍊婚惌鍡椕归敐鍫殙闁荤喐瀚堥弮鍫濆窛妞ゆ棁顫夌€垫牠姊绘担鍛婂暈濞撴碍顨婂畷銏ゆ寠婢跺棙鐎洪悗鍏夊亾闁告洦鍓涢崢閬嶆⒑閸濆嫬鏆為柟绋垮⒔婢规洟骞愭惔娑楃盎闂侀潧楠忕槐鏇€€傞懠顒傜<闁哄啫鍊搁弸娑欍亜閵忊剝绀嬮柟顔规櫊椤㈡洟锝為鐑嗘婵犵數鍋犻幓顏嗙礊閳ь剚銇勯銏╂█闁诡噯绻濋崺鈧い鎺戝閳锋帡鏌涚仦鎹愬闁逞屽厸缁瑩銆佸▎鎰瘈闁告洦鍓﹀ḿ鐔兼⒑閸撴彃浜濇繛鍙夌墱缁崵绱掑Ο闀愮盎闂佽宕樺▔娑㈩敁瀹€鍕厸濞达絽澹婇崕蹇斻亜椤撯剝纭堕柟椋庡█閸ㄩ箖宕楅崨顖涘瘻闂傚倷绶氶埀顒傚仜閼活垶宕㈤幖浣圭厾闁告劘灏欓崺锝呪攽閿涘嫭鏆柟顔界懇瀵爼骞嬮鐐搭啌濠电姵顔栭崰妤呮晝閳哄懎绀傛繛鎴炵椤洟鏌ㄥ┑鍡樺仾鐟滅増甯楅弲鏌ユ煕閳╁啰鎳呴柣鎾冲€搁—鍐Χ閸愩劎浠剧紒鐐緲缁夊墎鍒掗埡鍛亜缁炬媽椴搁弲婵嬫⒑闂堟稓澧曟繛璇х畵楠炲棝鏁愭径瀣ф嫼闂佸湱枪濞寸兘鍩ユ径瀣ㄤ簻闁挎棁顕у顕€鏌涢埞鎯т壕婵$偑鍊栫敮鎺楁晝閵壯€鍋撳鐐28缂傚倸鍊搁崐椋庢閿熺姴纾诲鑸靛姦閺佸鎲搁弮鍫㈠祦闁告劦鍠栫粻濠氭煕閹捐尙绐旈柍鐟扮箲缁绘繈濮€閿濆棛銆愬Δ妤婁簼閹稿啿鐣峰┑瀣窛閻庢稒岣块崢閬嶆⒑閸濆嫬鏆婇柛瀣尵缁辨帞鈧綆鍋呭畷宀€鈧鍣崑濠囧箖娴犲鍨傛い鎰╁灩楠炴垿姊绘担鍛婃儓婵炶绠戦~婵嬪Ω閳哄倸浠梺瀹犳〃鐠佹彃危閸儲鐓欓柣鎰靛墯缂嶆垿鏌熼崗鍏煎€愰柡灞界Х椤т線鏌涢幘鍗炲妤犵偛绻橀弫鎾绘晸閿燂拷1130缂傚倸鍊搁崐椋庣矆娓氣偓钘濇い鏍ㄧ矌閻捇鏌涢幘鑼槮闁搞劍绻堥弻銊╂偄閸濆嫅銏㈢磼閳ь剟宕掗悙瀵稿幈濠电偞鍨堕敃顐﹀绩缂佹ḿ绠鹃柛顐g箘閻掓悂鏌$仦绋垮⒉鐎垫澘瀚埀顒婄秵娴滄粓锝為崶顒佲拺闂侇偆鍋涢懟顖涙櫠椤曗偓閺屾稒绻濋崟顒€娈岄柧鑽ゅ仱閺屾洟宕煎┑鍥ь槱婵犳鍨伴妶鎼佸蓟閿濆绠i柣蹇旀た娴滄繄绮嬪澶婇唶闁哄洨鍠撻崢鎼佹⒑閸涘﹥绀嬫繛浣冲洦鍊堕柨婵嗘缁♀偓闂侀€炲苯澧撮柛鈺佸瀹曟ḿ鎹勯妸褏鍘┑鐘殿暯濡插懘宕归棃娑氭殾闂傚牊渚楅崯鍛節闂堟稓澧㈢痪鎹愭闇夐柨婵嗘瑜版帒姹查柡鍐ㄧ墛閻撳啰鎲稿⿰鍫濈婵炴垶纰嶉鑺ユ叏濡法鍫柍褜鍓欓崐鍧楀箠閻愬搫唯闁挎洍鍋撻柛鏂挎嚇濮婅櫣鎲撮崟顐㈠Б闂佸摜鍠庡ḿ锟犲箖閿熺姴鍗抽柣鎰У閻╊垶骞冭瀹曞ジ顢楅埀顒勫矗閺囩姷纾藉ù锝勭矙閸濊櫣绱掔拠鎻掓殭瀹€锝堟硶閹风娀宕i崒婊冩灁缂佽鲸甯掕灒闁绘垵娲ㄩ悾杈ㄣ亜椤撯剝纭堕柟鐟板閹煎綊宕滈幇鍓佺?缂佽鲸甯¢崹楣冨礃瀹割喕绱旈柣搴㈩問閸n噣宕戦崟顖氱厺閹兼番鍔岀粻娑欍亜閹捐泛啸闁宠鐭傚缁樻媴閻熼偊鍤嬬紓浣割儐閸ㄥ墎缂撴禒瀣睄闁稿本绮屽畷銉╂煟鎼淬垻鈯曞畝锝呮健閸┿垽寮崼鐔哄幗濠殿喗锕╅崜姘讹綖濠曞啯绻濋悽闈涗沪婵炲吋鐟╁畷銉р偓锝庡枟閸ゅ苯螖閿濆懎鏆欑紒鐘靛枛閺岀喖骞嗛悧鍫闂備浇锟ラ崐婵嬪蓟濞戙垹唯闁瑰瓨绻傞弳銏°亜閺傛妲搁柍瑙勫灴閹晛霉鐎n偓绱氶梻渚€娼ч悧鍡涘箠鎼淬劌鍑犳繛鍡樻尰閳锋垿鎮归崶锝傚亾閾忣偆浜栭梻浣告啞閺屻劍顨ラ幖浣哥厺闁规崘顕х粻锝夋煥閺冨倻鎽傛慨濠傛健濮婃椽鏌呴悙鑼跺濠⒀屽櫍瀵偊宕奸妷锔惧幈闁诲繒鍋涚敮鍝勵潩鐠鸿櫣锛涢梺鐟板⒔缁垶寮查幖浣圭叆闁绘洖鍊圭€氾拷
相关话题/污染 结构 质量 分数 技术