删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能

本站小编 Free考研考试/2021-12-31

肖芳芳1,,
张莹莹1,
程建华1,2,,
杨草1,
胡勇有1
1.华南理工大学环境与能源学院,广州 510006
2.华南理工大学华南协同创新研究院,东莞 523808
基金项目: 国家自然科学基金资助项目U1401235
广东省应用型科技研发项目2016B020240005
中央高校基本科研业务费专项基金D2172600
东莞市社会科学技术发展项目20185071631595国家自然科学基金资助项目(U1401235)
广东省应用型科技研发项目(2016B020240005)
中央高校基本科研业务费专项基金(D2172600)
东莞市社会科学技术发展项目(20185071631595)




Adsorption properties of chitosan/magnetic biochar for Cu(Ⅱ) removal from solution

XIAO Fangfang1,,
ZHANG Yingying1,
CHENG Jianhua1,2,,
YANG Cao1,
HU Yongyou1
1.School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
2.South China Institutes Collaborative Innovation, South China University of Technology, Dongguan 523808, China

-->

摘要
HTML全文
(0)(0)
参考文献(21)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以丝瓜络为原料制备壳聚糖/磁性生物炭(CMLB),并研究了改性前后的生物炭对重金属Cu(Ⅱ)的吸附性能。结果表明,改性后的生物炭包含γ-Fe2O3纳米颗粒,颗粒尺寸均匀,大小一致。CMLB对Cu(Ⅱ)的吸附量为54.68 mg·g-1,高于原始生物炭(LB)、磁性生物炭(MLB)的吸附量,且能够达到壳聚糖吸附量的86%。整个吸附过程在18 h达到平衡,在pH=5.8±0.1有较好的吸附效果。吸附反应动力学可采用准二级动力学方程拟合,吸附等温线符合Freundlich模型。CMLB吸附Cu(Ⅱ)的机制下包括离子交换、物理吸附和共沉淀。CMLB材料在处理废水后,利用磁铁可将材料从水中分离。CMLB可作为一种吸附剂有效去除水中的重金属,应用前景广阔。
关键词: 生物炭/
壳聚糖/
Cu(Ⅱ)/
吸附

Abstract:In this study, loofah was used to prepare magnetic biochar combined with chitosan (CMLB), and the Cu(Ⅱ) adsorption properties were compared for biochar before and after modification. The results showed that the modified biochar was coated with a layer of γ-Fe2O3 nanoparticles with uniform size. CMLB had higher Cu(Ⅱ) adsorption capacity of 54.68 mg·g-1 than pristine biochar and magnetic biochar,it could account for 86% chitosan adsorption capacity. The adsorption equilibrium time was 18 h and a good adsorption result occurred at pH of 5.8±0.1. The kinetics and thermodynamics of adsorption process could be well fitted with a pseudo-second-order kinetic model and a Freundlich one, respectively. The mechanisms of Cu(Ⅱ) removal included ion exchange,physical adsorption and surface coprecipitation. The used CMLB after heavy metal adsorption can be separated from solution by using an external magnetic field. These results showed that CMLB could effectively absorb heavy metal from water and have a good prospect of application in water and wastewater treatment.
Key words:biochar/
chitosan/
Cu(Ⅱ)/
adsorption.

加载中
[1] CUI X Q, XI D, KHAN K Y, et al. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata[J]. Bioresource Technology, 2016, 218: 1123-1132.
[2] ZHOU Y M, BIN G, ZIMMERMAN A R, et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231: 512-518.
[3] HUSSAIN A, MAITRA J, KHAN K A. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater[J]. Applied Water Science, 2017, 7(8): 4525-4537.
[4] WU H P, CUI L, ZENG G M, et al. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: A review[J]. Critical Reviews Biotechnology, 2017, 37(6): 754-764.
[5] QIAN L B, ZHANG W Y, YAN J C, et al. Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal[J]. Environtal Pollution, 2017, 223: 153-160.
[6] 吴明山, 马建锋, 杨淑敏, 等. 磁性生物炭复合材料研究进展[J]. 功能材料, 2016, 47(7): 7028-7033.
[7] LIU S B, HUANG B Y, CHAI L Y, et al. Enhancement of As(V) adsorption from aqueous solution by a magnetic chitosan/biochar composite[J]. RSC Advances, 2017, 7(18): 10891-10900.
[8] ZHOU F S, WANG H, FANG S, et al. Pb(II), Cr(VI) and atrazine sorption behavior on sludge-derived biochar: Role of humic acids[J]. Environmental Science and Pollution Research, 2015, 22(20): 16031-16039.
[9] DENG J Q, LIU Y G, LIU S B, et al. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar[J]. Journal of Colloid and Interface Science, 2017, 506: 355-364.
[10] PELLERA F M, GIANNIS A, KALDERIS D, et al. Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products[J]. Journal of Environmental of Environmental Management, 2012, 96(1): 35-42.
[11] SINGH B P, BLAKE J H, SINGH B, et al. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils[J]. Journal of Environmental Quality, 2010, 39(4): 1224-1235.
[12] WANG C H, GU L F, LIU X Y, et al. Sorption behavior of Cr(VI) on pineapple-peel-derived biochar and the influence of coexisting pyrene[J]. International Biodeterioration & Biodegradation, 2016, 111: 78-84.
[13] LAIRD D A, FLEMING P, DAVIS D, et al. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 443-449.
[14] TYTLAK A, PATRYK O, DOBROWOLSKI R. Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions[J]. Environmental Science and Pollution Research International, 2015, 22(8): 5985-5994.
[15] GUPTA V K, PATHANIA D, SHARMA S, et al. Preparation of bio-based porous carbon by microwave assisted phosphoric acid activation and its use for adsorption of Cr(VI)[J]. Jouranl of Colloid and Interface Science, 2013, 401: 125-132.
[16] ZHOU Y M, GAO B, ZIMMERMAN A R, et al. Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions[J]. Bioresource Technology, 2014, 152: 538-542.
[17] LIU Z G, ZHANG F S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 933-939.
[18] GAN C, LIU Y G, TAN X F, et al. Effect of porous zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution[J]. RSC Advances, 2015, 5: 35107-35115.
[19] YE S J, ZENG G M, WU H P, et al. Co-occurrence and interactions of pollutants, and their impacts on soil remediation: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(16): 1528-1553.
[20] YE S J, ZENG G M, WU H P, et al. Biological technologies for the remediation of co-contaminated soil[J]. Critical Reviews in Biotechnology, 2017, 37(8): 1062-1076.
[21] 蒋艳艳, 胡孝明, 金卫斌, 等. 生物炭对废水中重金属吸附研究进展[J]. 湖北农业科学, 2013, 52(13): 2984-2988.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1039
HTML全文浏览数:936
PDF下载数:136
施引文献:0
出版历程

刊出日期:2019-06-03




-->








壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能

肖芳芳1,,
张莹莹1,
程建华1,2,,
杨草1,
胡勇有1
1.华南理工大学环境与能源学院,广州 510006
2.华南理工大学华南协同创新研究院,东莞 523808
基金项目: 国家自然科学基金资助项目U1401235 广东省应用型科技研发项目2016B020240005 中央高校基本科研业务费专项基金D2172600 东莞市社会科学技术发展项目20185071631595国家自然科学基金资助项目(U1401235) 广东省应用型科技研发项目(2016B020240005) 中央高校基本科研业务费专项基金(D2172600) 东莞市社会科学技术发展项目(20185071631595)
关键词: 生物炭/
壳聚糖/
Cu(Ⅱ)/
吸附
摘要:以丝瓜络为原料制备壳聚糖/磁性生物炭(CMLB),并研究了改性前后的生物炭对重金属Cu(Ⅱ)的吸附性能。结果表明,改性后的生物炭包含γ-Fe2O3纳米颗粒,颗粒尺寸均匀,大小一致。CMLB对Cu(Ⅱ)的吸附量为54.68 mg·g-1,高于原始生物炭(LB)、磁性生物炭(MLB)的吸附量,且能够达到壳聚糖吸附量的86%。整个吸附过程在18 h达到平衡,在pH=5.8±0.1有较好的吸附效果。吸附反应动力学可采用准二级动力学方程拟合,吸附等温线符合Freundlich模型。CMLB吸附Cu(Ⅱ)的机制下包括离子交换、物理吸附和共沉淀。CMLB材料在处理废水后,利用磁铁可将材料从水中分离。CMLB可作为一种吸附剂有效去除水中的重金属,应用前景广阔。

English Abstract






--> --> --> 参考文献 (21)
相关话题/生物 材料 华南理工大学 社会科学 科研