删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多孔MoS2/g-C3N4材料对水环境中四环素的降解

本站小编 Free考研考试/2021-12-31

刘阳1,2,,
高生旺2,
王丽君2,
朱建超2,
高红1,
夏训峰2,
1.昆明理工大学建筑工程学院,昆明 650500
2.中国环境科学研究院,北京 100012
基金项目: 国家科技支撑计划课题2014BAL02B02国家科技支撑计划课题(2014BAL02B02)




Tetracycline degradation in aqueous solution by porous MoS2/g-C3N4

LIU Yang1,2,,
GAO Shengwang2,
WANG Lijun2,
ZHU Jianchao2,
GAO Hong1,
XIA Xunfeng2,
1.Faculty of Civil Engineering and Architectural, Kunming University of Science and Technology, Kunming 650500, China
2.Chinese Research Academy of Environmental Sciences, Beijing 100012, China

-->

摘要
HTML全文
(0)(0)
参考文献(25)
相关文章
施引文献
资源附件(0)
访问统计

摘要:通过浸渍-高温煅烧法制备多孔MoS2/g-C3N4光催化剂,采用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、N2吸附-解吸、紫外-可见光(UV-vis)漫反射吸收光谱对材料进行表征;并在可见光照射下,对四环素(TC)进行光催化降解。结果表明,催化剂量为2.0 g·L-1、pH为5.0时,对TC的去除效果最好,可见光照射180 min,MoS2/g-C3N4(1.0%-MC)复合材料对TC的降解率可达80.6%。反应完成后,复合材料循环利用5次,其降解效率仍保持在70.0%以上。浸渍-高温煅烧法所制备的MoS2/g-C3N4光催化剂具有良好的应用前景。
关键词: MoS2/g-C3N4/
浸渍-高温煅烧法/
四环素/
光催化降解

Abstract:The unique porous MoS2/g-C3N4 heterojunction photocatalyst was successfully constructed by a facile impregnation and calcination method. The obtained MoS2/g-C3N4 composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption, and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. Then it was used to photocatalytic degrade tetracycline (TC) under visible light irradiation. The results showed that the optimum TC degradation effect was achieved at MoS2/g-C3N4(1.0%-MC) dosage of 2.0 g·L -1 and pH 5.0. After 180 min visible light irradiation, the removal rate of TC reached 80.6%. The used MoS2/g-C3N4 could be recycled for 5 times, and its degradation rate for TC maintained above 70.0%. The MoS2/g-C3N4 composites prepared by facile impregnation and calcination method have a good application prospect.
Key words:MoS2/g-C3N4/
impregnation and calcination method/
tetracycline (TC)/
photodegradation.

加载中
[1] SAFARI G H, HOSEINI M, SEYEDSALEHI M, et al. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution[J]. International Journal of Environmental Science & Technology, 2015, 12(2): 603-616.
[2] WAMMER K H, SLATTERY M T, STEMIG A M, et al. Tetracycline photolysis in natural waters: Loss of antibacterial activity[J]. Chemosphere, 2011, 85: 1505-1510.
[3] DAGHRIR R, DROGUI P. Tetracycline antibiotics in the environment: A review[J]. Environmental Chemistry Letters, 2013, 11: 209-227.
[4] JIANG W T, CHANG P H, WANG Y S, et al. Sorption and desorption of tetracycline on layered manganese dioxide birnessite[J]. International Journal of Environmental Science & Technology, 2015, 12(5): 1695-1704.
[5] 邓玉, 倪福全. 水环境中抗生素残留及其危害[J]. 南水北调与水利科技, 2011, 9(3): 96-100.
[6] KIM I, TANAKA H. Photodegradation characteristics of PPCPs in water with UV treatment[J]. Environment International, 2009, 35(5): 793-802.
[7] LóPEZ-PE?ALVER J J, SáNCHEZ-POLO M, GóMEZ-PACHECO C V, et al. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(10): 1325-1333.
[8] HOMEM V, SANTOS L. Degradation and removal methods of antibiotics from aqueous matrices:A review[J]. Journal of Environmental Management, 2011, 92(10): 2304-2347.
[9] LI J, LIU E, MA Y, et al. Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity[J]. Applied Surface Science, 2016, 364: 694-702.
[10] CAO Y, GAO Q, LI Q, et al. Synthesis of 3D porous MoS2/g-C3N4 heterojunction as a high efficiency photocatalyst for boosting H2 evolution activity[J]. RSC Advances, 2017, 7(65): 40727-40733.
[11] MBOULA V M, HéQUET V, GRU Y, et al. Assessment of the efficiency of photocatalysis on tetracycline biodegradation[J]. Journal of Hazardous Material, 2012, 209-210(4): 355-364.
[12] HU J, CHENG W, HUANG S, et al. First-principles modeling of nonlinear optical properties of C3N4 polymorphs[J]. Applied Physics Letters, 2006, 89(26): 841-853.
[13] CHEN Y, LIN B, WANG H, et al. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts[J]. Chemical Engineering Journal, 2016, 286: 339-346.
[14] PATNAIK S, MARTHA S, PARIDA K M. An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production[J]. RSC Advances, 2016, 6(52): 46929-46951.
[15] LU D, WANG H, ZHAO X, et al. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1436-1445.
[16] LI H, YIN Z, HE Q, et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature[J]. Small, 2012, 8(1): 63-67.
[17] HWANG H, KIM H, CHO J. MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2013, 11(11): 4826-4830.
[18] HOU Y D, LAURSEN A B, ZHANG J S, et al. Layered nanojunctions for hydrogen-evolution catalysis[J]. Angewandte Chemie International Edition, 2013, 52(13): 3621-3625.
[19] ANSARI S A, CHO M H. Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications[J]. Scientific Reports, 2017, 7:43055-43065.
[20] LI N, ZHOU J, SHENG Z, et al. Molten salt-mediated formation of g-C3N4-MoS2, for visible-light-driven photocatalytic hydrogen evolution[J]. Applied Surface Science, 2017, 430: 218-224.
[21] TIAN Y, GE L, WANG K, et al. Synthesis of novel MoS2/g-C3N4, heterojunction photocatalysts with enhanced hydrogen evolution activity[J]. Materials Characterization, 2014, 87(17): 70-73.
[22] LI Q, ZHANG N, YANG Y, et al. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures[J]. Langmuir, 2014, 30(29): 8965-8972.
[23] AHMADI M, RAMEZANI M H, JAAFARZADEH N, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management, 2017, 186: 55-63.
[24] WANG P, YAP P S, LIM T T. C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation[J]. Applied Catalysis A: General, 2011, 399(1): 252-261.
[25] WANG Y, ZHANG H, CHEN L. Ultrasound enhanced catalytic ozonation of tetracycline in a rectangular air-lift reactor[J]. Catalysis Today, 2011, 175(1): 283-292.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1635
HTML全文浏览数:1457
PDF下载数:193
施引文献:0
出版历程

刊出日期:2019-04-15




-->








多孔MoS2/g-C3N4材料对水环境中四环素的降解

刘阳1,2,,
高生旺2,
王丽君2,
朱建超2,
高红1,
夏训峰2,
1.昆明理工大学建筑工程学院,昆明 650500
2.中国环境科学研究院,北京 100012
基金项目: 国家科技支撑计划课题2014BAL02B02国家科技支撑计划课题(2014BAL02B02)
关键词: MoS2/g-C3N4/
浸渍-高温煅烧法/
四环素/
光催化降解
摘要:通过浸渍-高温煅烧法制备多孔MoS2/g-C3N4光催化剂,采用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、N2吸附-解吸、紫外-可见光(UV-vis)漫反射吸收光谱对材料进行表征;并在可见光照射下,对四环素(TC)进行光催化降解。结果表明,催化剂量为2.0 g·L-1、pH为5.0时,对TC的去除效果最好,可见光照射180 min,MoS2/g-C3N4(1.0%-MC)复合材料对TC的降解率可达80.6%。反应完成后,复合材料循环利用5次,其降解效率仍保持在70.0%以上。浸渍-高温煅烧法所制备的MoS2/g-C3N4光催化剂具有良好的应用前景。

English Abstract






--> --> --> 参考文献 (25)
相关话题/科技 材料 昆明理工大学 建筑工程学院 中国环境科学研究院