删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

碱金属硝酸盐对促进LDH基材料吸附CO2性能的影响

本站小编 Free考研考试/2021-12-31

王君雅1,,
羊莹1,
宁平1
1.昆明理工大学环境科学与工程学院,昆明650500
基金项目: 云南省教育厅科学研究基金项目(2017ZZX137)
昆工理工大学高层次人才平台建设项目(201722017)
国家自然科学基金青年基金项目(51802135)




Effect of alkali metal nitrates promoted LDH-based material for CO2 sorption performance

WANG Junya1,,
YANG Ying1,
NING Ping1
1.Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China

-->

摘要
HTML全文
(0)(0)
参考文献(26)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为进一步提高LDH基材料的CO2吸附性能以及吸-脱循环稳定性能,采用浸渍法将碱金属硝酸盐负载在LDH基材料上,分别探究了Mg/Al比、合成pH、碱金属硝酸盐种类和负载量等对其CO2吸附性能的影响。结果表明,当LDH中Mg/Al比例为20,合成pH为10,负载30% Li0.3Na0.18K0.52NO3后,在最佳煅烧温度500 ℃,最佳吸附温度260 ℃的条件下,其 CO2吸附量最大可达到4.64 mmol·g?1。另外,该材料在经历了10个吸-脱附循环过程后,表现出较好的循环稳定性能。通过分析可知,碱金属硝酸盐没有参与CO2吸附反应,碱金属硝酸盐的负载对LDH的CO2吸附性能有极大地促进作用。
关键词: 类水滑石/
CO2吸附/
碱金属硝酸盐/
循环稳定性能

Abstract:In order to further improve the CO2 sorption performance and enhance the repeatable sorption-desorption cycling stability of LDH-based materials, alkali metal nitrate was loaded onto LDH-based material by immersion method. The effect of Mg/Al ratio, synthesis of pH, types of alkali metal nitrates and their loading amount on CO2 sorption capacity were investigated. The results showed that the optimal conditions to achieve he maximum sorption performance were indentified, including Mg/Al ratio of LDH is 30, synthetic pH is 10, Li0.3Na0.18K0.52NO3 oading is 30%, calcination temperature is 500 ℃ and sorption temperature is 260 ℃. The maximum CO2 sorption capacity can reach as high as 4.64 mmol·g?1. In addition, the material exhibited good cycling stability during 10 sorption-desorption cycles. According to the analysis, alkali metal nitrates were not participated in the CO2 sorption reaction. Therefore, based on the above-mentioned results, loading with alkali metal nitrates on the LDH greatly promoted the CO2 sorption performance.
Key words:layered double hydroxide/
CO2 sorption/
alkali metal nitrate/
sorption-desorption cycling stability.

加载中
[1] WANG J, HUANG L, YANG R, et al.Recent advances in solid sorbents for CO2 capture and new development trends[J].Energy & Environmental Science,2014,7(11):3478-3518 10.1039/C4EE01647E
[2] WANG Q, TAY H H, ZHONG Z, et al.Synthesis of high-temperature CO2 adsorbents from organo-layered double hydroxides with markedly improved CO2 capture capacity[J].Energy & Environmental Science, 2012,5(6):7526–7530 10.1039/C2EE21409A
[3] MONDAL M K, BALSORA H K, VARSHNEY P.Progress and trends in CO2 capture/separation technologies: A review[J].Energy,2012,46(1):431-441 10.1016/j.energy.2012.08.006
[4] GAO Y, ZHANG Z, WU J, et al.Comprehensive investigation of CO2 adsorption on Mg–Al–CO3 LDH-derived mixed metal oxides[J].Journal of Materials Chemistry A,2013,41(1):12782-12790 10.1039/C3TA13039H
[5] 朱晨明, 王保登, 张中正, 等. 金属-有机骨架复合材料的制备及其二氧化碳吸附性能[J]. 化工进展,2016,35(9):2876-2884
[6] ELONEVA S, SAID A, FOGELHOLM C J, et al.Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate[J].Applied Energy,2012,90(1):329-334 10.1016/j.apenergy.2011.05.045
[7] ZHAO B, TAO W, ZHONG M, et al.Process, performance and modeling of CO2 capture by chemical absorption using high gravity: A review[J].Renewable and Sustainable Energy Reviews,2016,65:44-56 10.1016/j.rser.2016.06.059
[8] BOBICKI E R, LIU Q, XU Z, et al.Carbon capture and storage using alkaline industrial wastes[J].Progress in Energy and Combustion Science, 2016,38(2):302-320 10.1016/j.pecs.2011.11.002
[9] OLIVARES-MARIN M, DRAGE T C, MAROTO-VALER M M.Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures[J].International Journal of Greenhouse Gas Control,2010,4(4):623-629 10.1016/j.ijggc.2009.12.015
[10] IRURETAGOYENA D, HUANG X, SHAFFER M S P, et al.Influence of alkali metals (Na, K, and Cs) on CO2 adsorption by layered double oxides supported on graphene oxide[J].Industrial & Engineering Chemistry Research,2015,54(46):11610-11618 10.1021/acs.iecr.5b02762
[11] FICICILAR B, DOGU T.Breakthrough analysis for CO2 removal by activated hydrotalcite and soda ash[J].Catalysis Today,2006,115(1/2/3/4):274–278 10.1016/j.cattod.2006.02.058
[12] HUANG L, XU C, REN R, et al.Revealing how molten salts promote CO2 capture on CaO via an impedance study and sorption kinetics simulation[J].Sustainable Energy & Fuels,2018,2(1):68-72 10.1039/C7SE00502D
[13] 高峰, 李存梅, 王媛, 等. 孙树脂基球状活性炭的制备及对二氧化碳吸附性能的研究[J]. 燃料化学学报,2014,42(1):116-170
[14] 陈爱兵, 于奕峰, 臧文伟, 等. 掺氮多孔碳在二氧化碳吸附分离中的应用[J]. 无机材料学报,2015,30(1):9-16
[15] WANG Q, GAO Y, LUO J, et al.Synthesis of nano-sized spherical Mg3Al–CO3 layered double hydroxide as a high-temperature CO2 adsorbent[J].RSC Advances,2013,3(10):3414–3420 10.1039/C2RA22607C
[16] WANG Q, TAY H H, NG D J W, et al.The effect of trivalent cations on the performance of Mg-M-CO3 layered double hydroxides for high-temperature CO2 capture[J].ChemSusChem,2010,3(8):965-973 10.1002/cssc.201000099
[17] 艾宁, 姜哲, 徐茜, 等. 氨基改性层状双氢氧化物的制备及其二氧化碳吸附机理[J]. 化工学报,2013,64(2):616-623
[18] WANG J.HUANG L, GAO Y, et al.A simple and reliable method for determining the delamination degree of nitrate and glycine intercalated LDHs in formamide[J].Chemical.Communications,2014,50(70):10130-10132 10.1039/C4CC05015K
[19] LI S, SHI Y, YANG Y, et al.High-performance CO2 adsorbent from interlayer?at moderate temperatures[J].Chemistry of Materials,2015,27(6):1943-1949 10.1021/cm503295g
[20] HUANG L, WANG J, GAO Y, et al.Synthesis of LiAl2-layered double hydroxides for CO2 capture over a wide temperature range[J].Journal of Materials Chemistry A,2014,2(43):18454–18462 10.1039/C4TA04065A
[21] LEE J M, MIN Y J, LEE K B, et al.Enhancement of CO2 sorption uptake on hydrotalcite by impregnation with K2CO3[J].Langmuir,2010,26(24):18788–18797 10.1021/la102974s
[22] 王磊. 碱金属盐修饰MgO基CO2吸附剂的制备及其结构:性能关系的研究[D]. 上海:华东理工大学,2017
[23] QIAO Y, WANG J, ZHANG Y, et al.Alkali nitrates molten salt modified commercial MgO for intermediate-temperature CO2 capture: optimization of the Li/Na/K ratio[J].Industrial & Engineering Chemistry Research,2017,56(6):1509-1517 10.1021/acs.iecr.6b04793
[24] GAO W, ZHOU T, LOUIS B, et al.Hydrothermal fabrication of high specific surface area mesoporous MgO with excellent CO2 adsorption potential at intermediate temperatures[J].Catalysts,2017,7(4):116-131 10.3390/catal7040116
[25] GAO W, ZHOU T, GAO Y, et al.Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: A review[J].Journal of Energy Chemistry,2017,26(5):830-838 10.1016/j.jechem.2017.06.005
[26] ZHANG K, LI X S, LI W Z, et al.Phase transfer-catalyzed fast CO2 absorption by MgO-based absorbents with high cycling capacity[J].Advanced Materials Interfaces,2014,1(3):1400030 10.1002/admi.201400030



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:991
HTML全文浏览数:784
PDF下载数:129
施引文献:0
出版历程

刊出日期:2018-11-29




-->








碱金属硝酸盐对促进LDH基材料吸附CO2性能的影响

王君雅1,,
羊莹1,
宁平1
1.昆明理工大学环境科学与工程学院,昆明650500
基金项目: 云南省教育厅科学研究基金项目(2017ZZX137) 昆工理工大学高层次人才平台建设项目(201722017) 国家自然科学基金青年基金项目(51802135)
关键词: 类水滑石/
CO2吸附/
碱金属硝酸盐/
循环稳定性能
摘要:为进一步提高LDH基材料的CO2吸附性能以及吸-脱循环稳定性能,采用浸渍法将碱金属硝酸盐负载在LDH基材料上,分别探究了Mg/Al比、合成pH、碱金属硝酸盐种类和负载量等对其CO2吸附性能的影响。结果表明,当LDH中Mg/Al比例为20,合成pH为10,负载30% Li0.3Na0.18K0.52NO3后,在最佳煅烧温度500 ℃,最佳吸附温度260 ℃的条件下,其 CO2吸附量最大可达到4.64 mmol·g?1。另外,该材料在经历了10个吸-脱附循环过程后,表现出较好的循环稳定性能。通过分析可知,碱金属硝酸盐没有参与CO2吸附反应,碱金属硝酸盐的负载对LDH的CO2吸附性能有极大地促进作用。

English Abstract






--> --> --> 参考文献 (26)
相关话题/材料 昆明理工大学 化工 环境科学 工程学院