删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

核桃壳生物炭小球对雌激素污染物的吸附机制

本站小编 Free考研考试/2021-12-31

徐欢欢1,,
宋新山1,
司志浩1,
王宇晖1,
1.东华大学环境科学与工程学院,上海 201620
基金项目: 中央高校基本科研业务费专项基金 18D111310中央高校基本科研业务费专项基金 (18D111310)




Adsorption mechanism of estrogenic pollutants on biochar pellets made from walnut shell

XU Huanhuan1,,
SONG Xinshan1,
SI Zhihao1,
WANG Yuhui1,
1.College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

-->

摘要
HTML全文
(0)(0)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为探究生物炭小球对雌激素污染物的吸附机制,以农业废弃物核桃壳为原材料,在400 ℃下热解碳化制备生物炭,与黏土、碳酸氢钠、硅酸钠混合制备生物炭小球。采用ESEM观察、比表面积测定、红外光谱对其表面结构和组成进行表征,并将其用于对雌酮(E1)、雌二醇(E2)和雌三醇(E3)的吸附去除研究。分别考察了吸附时间、溶液pH、生物炭小球投加量以及雌激素初始浓度对吸附效果的影响,并通过颗粒内扩散、等温吸附、吸附动力学探讨其吸附机制。结果表明:生物炭小球对雌激素的吸附平衡时间为15 min;投加量为1 g、pH为5、初始浓度为2 500 μg·L-1时平衡吸附量最大;颗粒内扩散模型研究结果表明吸附机制包括分配作用和表面吸附;准二级动力学可较好地描述生物炭小球对雌激素的吸附过程;生物炭小球对雌激素的吸附过程符合Freundlich等温吸附模型。所制备的生物炭小球对雌激素污染物具有较好的去除效果,在环境治理方面具有一定的应用前景。
关键词: 生物炭小球制备/
生物炭小球吸附机制/
水体雌激素污染

Abstract:In order to explore the adsorption mechanism of estrogenic pollutants, the biochar was prepared through pyrolyzation and carbonization of the agricultural wastes walnut shell at 400 ℃, then it was mixed with clay, sodium bicarbonate and sodium silicate to prepare the biochar pellets. The surface structure and composition of these pellets were characterized by ESEM observation, specific surface area measurement and infrared spectroscopy, respectively. The performance of these pellets on the adsorption of estrogens estrone (E1), estradiol (E2) and estriol (E3) was studied. Experiments were conducted at different adsorption time, biochar pellets dosage, solute pH and initial estrogen concentration, and the adsorption mechanism was investigated through isothermal adsorption, intraparticle diffusion, adsorption kinetics. Results showed that the adsorption of estrogenic pollutants on biochar pellets reached equilibrium after 15 min. The maximum equilibrium adsorption capacity occurred at the dosage of 1 g, pH=5 and initial estrogen concentration of 2 500 μg·L-1. The fitting results of the particle diffusion model indicated that the adsorption mechanisms were partition and surface adsorption. Quasi-second-order kinetics could well describe the adsorption process of estrogen on biochar pellets. And the adsorption data at different initial estrogen concentrations fitted to Freundlich adsorption isotherms. The biochar pellets had a good performance on estrogen pollutants removal. Therefore, it has a certain application prospect in environmental governance.
Key words:preparation of biochar pellets/
adsorption mechanism of biochar pellets/
estrogens pollution of water.

加载中
[1] KABIR E R, RAHMAN M S, RAHMAN I. A review on endocrine disruptors and their possible impacts on human health[J]. Environmental Toxicology & Pharmacology, 2015, 40(1): 241-258.
[2] DAMSTRA T, BARLOW S, BERGMAN A, et al. Global assessment of the state of the science of endocrine disruptors[J]. Polui??o Ambiental, 2002, 35(4): 333-343.
[3] DUONG C N, JINSUNG R, JAEWEON C, et al. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries[J]. Chemosphere, 2010, 78(3): 286-293.
[4] KHANAL S K, XIE B, THOMPSON M L, et al. Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems[J]. Environmental Science & Technology, 2007, 38(1): 6537-6546.
[5] TIJANI J O, FATOBA O O, PETRIK L F. A review of pharmaceuticals and endocrine-disrupting compounds: Sources, effects, removal, and detections[J]. Water, Air & Soil Pollution, 2013, 224(1170): 1-29.
[6] BAKSHI S, HE Z L, HARRIS W G. Biochar amendment affects leaching potential of copper and nutrient release behavior in contaminated sandy soils[J]. Journal of Environmental Quality, 2014, 43(6): 1894-1902.
[7] SUN K, RO K, GUO M, et al. Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars[J]. Bioresource Technology, 2011, 102(10): 5757-5763.
[8] 王立果, 钟金魁, 赵保卫, 等. 水中镉和芘在核桃壳生物炭上的吸附行为及其交互作用[J]. 农业环境科学学报, 2017, 36(9): 1868-1876.
[9] 刘巍, 胡中华, 刘亚菲, 等. 新型固定化生物小球的研制及其处理模拟苯胺废水的特性[J]. 环境科学学报, 2009, 29(6): 1195-1202.
[10] 黄潇. 河口湿地高效降解菌生物炭球固定化技术及作用效果研究[D]. 青岛: 中国海洋大学, 2015.
[11] 刘桂芳. 表面改性活性炭吸附酚类内分泌干扰物的性能与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2008.
[12] YANG H, YAN R, CHEN H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12): 1781-1788.
[13] 李沛辰, 毋伟, 张丰松, 等. 秸秆生物碳的结构特征及其对17β-雌二醇的吸附性能[J]. 环境科学研究, 2015, 28(8): 1260-1266.
[14] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253.
[15] YANG H, XU R, XUE X, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal[J]. Journal of Hazardous Materials, 2008, 152(2): 690-698.
[16] 赵华轩, 郎印海. 磁性生物炭对水中CIP和OFL的吸附行为和机制[J]. 环境科学, 2018, 39(8): 3729-3735.
[17] 王昌稳, 李军, 赵白航, 等. 颗粒活性炭吸附去除水中雌激素的试验研究[J]. 北京工业大学学报, 2014, 40(4): 607-612.
[18] TAN C Y, LI M, LIN Y M, et al. Biosorption of basic orange from aqueous solution onto dried A. filiculoides biomass: Equilibrium, kinetic and FTIR studies[J]. Desalination, 2011, 266(1): 56-62.
[19] BAUTISTA T I, FERRO G M A, RIVERA U J, et al. Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry[J]. Environmental Science & Technology, 2005, 39(16): 6246-6250.
[20] FU H, LI X, WANG J, et al. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling[J]. Journal of Environmental Sciences, 2017, 56(6): 145-152.
[21] HUI D, LU J, LI G, et al. Adsorption of methylene blue on adsorbent materials produced from cotton stalk[J]. Chemical Engineering Journal, 2011, 172(1): 326-334.
[22] 黄华, 王雅雄, 唐景春, 等. 不同烧制温度下玉米秸秆生物炭的性质及对萘的吸附性能[J]. 环境科学, 2014, 35(5): 1884-1890.
[23] CHEN L, BAI B. Equilibrium, kinetic, thermodynamic, and in situ regeneration studies about methylene blue adsorption by the raspberry-like TiO2@yeast microspheres[J]. Industrial & Engineering Chemistry Research, 2013, 52(44): 15568-15577.
[24] 张鹏, 武健羽, 李力, 等. 猪粪制备的生物炭对西维因的吸附与催化水解作用[J]. 农业环境科学学报, 2012, 31(2): 416-421.
[25] 巫林, 刘颖, 李燕, 等. 蚯蚓粪便生物炭对水体中雌二醇的吸附[J]. 环境科学研究, 2016, 29(10): 1537-1545.
[26] ZHANG P, SUN H, YU L, et al. Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars[J]. Journal of Hazardous Materials, 2013, 244-245(3): 217-224.
[27] VIJAYARAGHAVAN K, PALANIVELU K, VELAN M. Biosorption of copper(II) and cobalt(II) from aqueous solutions by crab shell particles[J]. Bioresource Technology, 2006, 97(12): 1411-1419.
[28] TURKMENLER H, OZACAR M, SENGIL I A. Biosorption of lead onto mimosa tannin resin: Quilibrium and kinetic studies[J]. International Journal of Environment & Pollution, 2008, 34(1): 57-70.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1172
HTML全文浏览数:978
PDF下载数:202
施引文献:0
出版历程

刊出日期:2019-04-15




-->








核桃壳生物炭小球对雌激素污染物的吸附机制

徐欢欢1,,
宋新山1,
司志浩1,
王宇晖1,
1.东华大学环境科学与工程学院,上海 201620
基金项目: 中央高校基本科研业务费专项基金 18D111310中央高校基本科研业务费专项基金 (18D111310)
关键词: 生物炭小球制备/
生物炭小球吸附机制/
水体雌激素污染
摘要:为探究生物炭小球对雌激素污染物的吸附机制,以农业废弃物核桃壳为原材料,在400 ℃下热解碳化制备生物炭,与黏土、碳酸氢钠、硅酸钠混合制备生物炭小球。采用ESEM观察、比表面积测定、红外光谱对其表面结构和组成进行表征,并将其用于对雌酮(E1)、雌二醇(E2)和雌三醇(E3)的吸附去除研究。分别考察了吸附时间、溶液pH、生物炭小球投加量以及雌激素初始浓度对吸附效果的影响,并通过颗粒内扩散、等温吸附、吸附动力学探讨其吸附机制。结果表明:生物炭小球对雌激素的吸附平衡时间为15 min;投加量为1 g、pH为5、初始浓度为2 500 μg·L-1时平衡吸附量最大;颗粒内扩散模型研究结果表明吸附机制包括分配作用和表面吸附;准二级动力学可较好地描述生物炭小球对雌激素的吸附过程;生物炭小球对雌激素的吸附过程符合Freundlich等温吸附模型。所制备的生物炭小球对雌激素污染物具有较好的去除效果,在环境治理方面具有一定的应用前景。

English Abstract






--> --> --> 参考文献 (28)
相关话题/生物 环境科学 过程 农业 中央