林薇1,
李玉梅1,
张连科1,2,
韩剑宏1,
1.内蒙古科技大学能源与环境学院,包头 014010
2.西安建筑科技大学市政与环境工程学院,西安710055
基金项目: 内蒙古科技大学创新基金资助项目2016QDL-B08
内蒙古自然科学基金博士基金资助项目2016BS0511内蒙古科技大学创新基金资助项目(2016QDL-B08)
内蒙古自然科学基金博士基金资助项目(2016BS0511)
Effect of zero-valent iron loaded black carbon on the stabilization effects and bioavilability of copper and chromium in combined contaminated soil
WANG Weida1,,LIN Wei1,
LI Yumei1,
ZHANG Lianke1,2,
HAN Jianhong1,
1.School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
2.School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:采用直接热解法和碳热还原法分别制备了黑炭(BC)和黑炭负载零价铁(BF)材料,通过土壤稳定化培养实验和盆栽实验,考察了BC和BF对复合污染土壤中铜和铬的稳定化效果及其对生物有效性的影响。实验结果表明,BC可提高土壤pH,BF则降低土壤的pH。在投加量为5 g·kg-1的情况下,处理30 d后,BC和BF对土壤中TCLP-Cu的去除率分别为76.99%和69.83%;BC对TCLP-Crtotal和TCLP-Cr(VI)去除率分别为91.07%和92.47%,BF对TCLP-Crtotal和TCLP-Cr(VI)的去除率均接近100%,两者均能有效降低土壤重金属迁移性。形态分析表明,投加BC和BF均促进了铜由酸可提取态向可还原态和可氧化态转化,同时使铬的酸可提取态降低,可氧化态增加。盆栽实验表明,BC和BF均大大降低了土壤中铜和铬的生物有效性,减弱了其由植物根部向地上迁移的能力。相比而言,BF在对复合污染土壤中铜和铬的稳定化效果、形态转化以及迁移性方面整体优于BC。
关键词: 重金属复合污染土壤/
黑炭负载零价铁/
土壤修复/
生物有效性
Abstract:Black carbon (BC) and zero-valent iron loaded black carbon (BF) materials were prepared by direct pyrolysis method and carbothermal reduction method, respectively. Then the stabilization culture experiments and pot experiments were conducted to evaluate the effect of BC and BF on the stabilization and bioavailability of Cu and Cr in multi-contaminated soil. The results showed that soil pH increased with BC addition, while decreased with BF. The stabilization tests indicated that the removal efficiencies of TCLP-Cu were 76.99% and 69.83% after 30 days treatment by BC and BF at dosage of 5 g·kg-1, respectively. The removal efficiencies of TCLP-Crtotal and TCLP-Cr(VI) with BC addition were 91.07% and 92.47%, respectively, while those with BF addition were close to 100%, this indicated that BC or BF addition could effectively reduce the migration of heavy metal in soils. The species analysis showed that BC and BF addition promoted the transformation from the acid-extractable Cu species to reducible and oxidizable ones, the transformation from acid-extractable Cr species to oxidizable ones. Pot experiments indicated that BC and BF addition could significantly reduce the bioavailability of Cu and Cr in the soil and effectively weakened the migration ability from plant roots to the ground. Consequently, BF addition is superior to BC addition in terms of the stabilization effect, form transformation and migration of Cu and Cr in combined contaminated soil.
Key words:heavy metal combined contaminated soil/
zero-valent iron loaded black carbon/
soil remediation/
bioavailability.
[1] | 陈能场, 郑煜基, 何晓峰, 等. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 1689-1692. |
[2] | DZOMBAK D A. Remediation of metals-contaminated soils and groundwater[J]. MIT System Dynamics in Education Project, 1997, 485(9): 3-22. |
[3] | 徐清, 张立新, 刘素红, 等. 表层土壤重金属污染及潜在生态风险评价: 包头市不同功能区案例研究[J]. 自然灾害学报, 2008, 17(6): 6-12. |
[4] | 王夏芳. 铜离子对环境危害现状及对策研究[J]. 国土与自然资源研究, 2015(1): 55-57. |
[5] | 刘婉, 李泽琴. 水中铬污染治理的研究进展[J]. 广东微量元素科学, 2007, 14(9): 5-9. |
[6] | 黄敏, 杨海舟, 余萃, 等. 武汉市土壤重金属积累特征及其污染评价[J]. 水土保持学报, 2010, 24(4): 135-139. |
[7] | 邢英, 张永航, 韦万丽, 等. 生物炭钝化修复镉、铅、铜和砷污染土壤的研究进展[J]. 贵州农业科学, 2015, 43(7): 193-197. |
[8] | 曹心德, 魏晓欣, 代革联, 等. 土壤重金属复合污染及其化学钝化修复技术研究进展[J]. 环境工程学报, 2011, 5(7): 1441-1453. |
[9] | 赵海亮, 赵海光, 段怡君, 等. 生物炭对土壤中复合重金属的固化/稳定化研究[J]. 四川环境, 2017(6): 161-164. |
[10] | 何陈. 稳定纳米零价铁的制备与修复土壤中六价铬的研究[D]. 上海: 上海大学, 2015. |
[11] | XU Y H, ZHAO D Y. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles[J]. Water Research, 2007, 41(10): 2101-2108. |
[12] | 孟繁健, 朱宇恩, 李华, 等. 改性生物炭负载nZVI对土壤Cr(VI)的修复差异研究[J]. 环境科学学报, 2017, 37(12): 4715-4723. |
[13] | 薛嵩, 钱林波, 晏井春, 等. 生物炭携载纳米零价铁对溶液中Cr(Ⅵ)的去除[J]. 环境工程学报, 2016, 10(6): 2895-2901. |
[14] | 张小毛, 陈维芳, 晏长成, 等. 液相还原和碳热法制备纳米零价铁/活性炭复合材料的比较研究[J]. 水资源与水工程学报, 2015, 26(3): 129-135. |
[15] | LAMBRECHTS T, COUDER E, BERNAL M P, et al. Assessment of heavy metal bioavailability in contaminated soils from a former mining area (La Union, Spain) using a rhizospheric test[J]. Water, Air, & Soil Pollution, 2011, 217(1/2/3/4): 333-346. |
[16] | 刘芬. 株洲地区土壤pH值测定方法研究[J]. 农业环境科学学报, 1998, 17(2): 84-85. |
[17] | 陈才丽, 张进, 成应向, 等. 骨炭和硫化钠联用修复镉-锌污染土壤[J]. 环境工程学报, 2015, 9(8): 4069-4074. |
[18] | 陈昱, 钱云, 梁媛, 等. 生物炭对Cd污染土壤的修复效果与机理[J]. 环境工程学报, 2017, 11(4): 2528-2534. |
[19] | XU G, SUN J N, SHAO H B, et al. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity[J]. Ecological Engineering, 2014, 62(1): 54-60. |
[20] | HAN W J, FU F L, CHENG Z H, et al. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater[J]. Journal of Hazardous Materials, 2015, 302: 437-446. |
[21] | 李丹. 纳米零价铁/生物质碳复合材料的制备及在镍废水处理中的应用[D]. 太原: 山西大学, 2017. |
[22] | 谢祖彬, 刘琦, 许燕萍, 等. 生物炭研究进展及其研究方向[J]. 土壤, 2011, 43(6): 857-861. |
[23] | 吴萍萍, 李录久, 李敏. 生物炭负载铁前后对复合污染土壤中Cd、Cu、As淋失和形态转化的影响研究[J]. 环境科学学报, 2017, 37(10): 3959-3967. |
[24] | YAN W L, HERZING A A, KIELY C J, et al. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water[J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 96-104. |
[25] | 杨亚鸽, 崔立强, 严金龙, 等. 镉污染土壤生物质炭修复的化学稳定机制[J]. 安徽农业科学, 2013, 41(5): 2044-2046. |
[26] | UCHIMIYA M, CHANG S, KLASSON K T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups[J]. Journal of Hazardous Materials, 2011, 190(1): 432-441. |
[27] | YUAN J H, XU R K, WEI Q, et al. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars[J]. Journal of Soils & Sediments, 2011, 11(5): 741-750. |
[28] | AHMAD M, RAJAPAKSHA A U, |
[29] | NOUBACTEP C. Comments on “Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS)”[J]. Industrial & Engineering Chemistry Research, 2009, 47(7): 2131-2139. |
[30] | SHI L N, LIN Y M, ZHANG X, et al. Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution[J]. Chemical Engineering Journal, 2011, 171(2): 612-617. |
[31] | DONG H R, DENG J M, XIE Y K, et al. Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2017, 332: 79-86. |
[32] | JIANG J, XU R K, JIANG T Y, et al. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol[J]. Journal of Hazardous Materials, 2012, 229-230(5): 145-150. |
[33] | 唐行灿, 陈金林, 张民. 生物炭对铜、铅、镉复合污染土壤的修复效果[J]. 广东农业科学, 2014, 41(12): 67-71. |
[34] | 李雨清, 何江, 吕昌伟, 等. 富里酸对重金属在沉积物上吸附及形态分布的影响[J]. 环境科学, 2016, 37(3): 1008-1015. |
[35] | 杨林, 陈志明, 刘元鹏, 等. 石灰、活性炭对铬污染土壤的修复效果研究[J]. 土壤学报, 2012, 49(3): 518-525. |
[36] | PENG X, YE L L, WANG C H, et al. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China[J]. Soil & Tillage Research, 2011, 112(2): 159-166. |
[37] | GODLEWSKA P, SCHMIDT H P, YONG S O, et al. Biochar for composting improvement and contaminants reduction: A review[J]. Bioresource Technology, 2017, 246: 193-202. |
[38] | STEINBEISS S, GLEIXNER G, ANTONIETTI M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology & Biochemistry, 2009, 41(6): 1301-1310. |
[39] | 韩剑宏, 李艳伟, 张连科, 等. 生物炭和脱硫石膏对盐碱土壤基本理化性质及玉米生长的影响[J]. 环境工程学报, 2017, 11(9): 5291-5297. |
[40] | 李中阳, 齐学斌, 樊向阳, 等. 生物质炭对冬小麦产量、水分利用效率及根系形态的影响[J]. 农业工程学报, 2015, 31(12): 119-124. |
[41] | 韦建玉, 金亚波, 杨启港, 等. 植物铁营养研究进展Ⅱ: 铁运输与铁有关的分子生物学基础[J]. 安徽农业科学, 2007, 35(33): 10589-10593. |
[42] | LU K P, YANG X, SHEN J J, et al. Effect of bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola[J]. Agriculture Ecosystems & Environment, 2014, 191: 124-132. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:891
HTML全文浏览数:772
PDF下载数:185
施引文献:0
出版历程
刊出日期:2019-04-15
-->
黑炭负载零价铁对复合污染土壤中铜和铬的稳定化效果及生物有效性影响
王维大1,,林薇1,
李玉梅1,
张连科1,2,
韩剑宏1,
1.内蒙古科技大学能源与环境学院,包头 014010
2.西安建筑科技大学市政与环境工程学院,西安710055
基金项目: 内蒙古科技大学创新基金资助项目2016QDL-B08 内蒙古自然科学基金博士基金资助项目2016BS0511内蒙古科技大学创新基金资助项目(2016QDL-B08) 内蒙古自然科学基金博士基金资助项目(2016BS0511)
关键词: 重金属复合污染土壤/
黑炭负载零价铁/
土壤修复/
生物有效性
摘要:采用直接热解法和碳热还原法分别制备了黑炭(BC)和黑炭负载零价铁(BF)材料,通过土壤稳定化培养实验和盆栽实验,考察了BC和BF对复合污染土壤中铜和铬的稳定化效果及其对生物有效性的影响。实验结果表明,BC可提高土壤pH,BF则降低土壤的pH。在投加量为5 g·kg-1的情况下,处理30 d后,BC和BF对土壤中TCLP-Cu的去除率分别为76.99%和69.83%;BC对TCLP-Crtotal和TCLP-Cr(VI)去除率分别为91.07%和92.47%,BF对TCLP-Crtotal和TCLP-Cr(VI)的去除率均接近100%,两者均能有效降低土壤重金属迁移性。形态分析表明,投加BC和BF均促进了铜由酸可提取态向可还原态和可氧化态转化,同时使铬的酸可提取态降低,可氧化态增加。盆栽实验表明,BC和BF均大大降低了土壤中铜和铬的生物有效性,减弱了其由植物根部向地上迁移的能力。相比而言,BF在对复合污染土壤中铜和铬的稳定化效果、形态转化以及迁移性方面整体优于BC。
English Abstract
Effect of zero-valent iron loaded black carbon on the stabilization effects and bioavilability of copper and chromium in combined contaminated soil
WANG Weida1,,LIN Wei1,
LI Yumei1,
ZHANG Lianke1,2,
HAN Jianhong1,
1.School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, China
2.School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Keywords: heavy metal combined contaminated soil/
zero-valent iron loaded black carbon/
soil remediation/
bioavailability
Abstract:Black carbon (BC) and zero-valent iron loaded black carbon (BF) materials were prepared by direct pyrolysis method and carbothermal reduction method, respectively. Then the stabilization culture experiments and pot experiments were conducted to evaluate the effect of BC and BF on the stabilization and bioavailability of Cu and Cr in multi-contaminated soil. The results showed that soil pH increased with BC addition, while decreased with BF. The stabilization tests indicated that the removal efficiencies of TCLP-Cu were 76.99% and 69.83% after 30 days treatment by BC and BF at dosage of 5 g·kg-1, respectively. The removal efficiencies of TCLP-Crtotal and TCLP-Cr(VI) with BC addition were 91.07% and 92.47%, respectively, while those with BF addition were close to 100%, this indicated that BC or BF addition could effectively reduce the migration of heavy metal in soils. The species analysis showed that BC and BF addition promoted the transformation from the acid-extractable Cu species to reducible and oxidizable ones, the transformation from acid-extractable Cr species to oxidizable ones. Pot experiments indicated that BC and BF addition could significantly reduce the bioavailability of Cu and Cr in the soil and effectively weakened the migration ability from plant roots to the ground. Consequently, BF addition is superior to BC addition in terms of the stabilization effect, form transformation and migration of Cu and Cr in combined contaminated soil.