删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同水热炭化条件处理青霉素菌渣制备生物炭

本站小编 Free考研考试/2021-12-31

赵志瑞1,2,3,4,,
赵秀梅5,
颜嘉晨1,
李铎1,2,
张佳瑶1,4,
单保庆4,
1.河北地质大学水资源与环境学院,石家庄 050031
2.河北省水资源可持续利用与开发重点实验室,石家庄 050031
3.河北省水资源可持续利用与产业结构优化协同创新中心,石家庄 050031
4.中国科学院生态环境研究中心,北京 100085
5.华北制药股份有限责任公司,石家庄 050015
基金项目: 国家水体污染控制与治理科技重大专项2012ZX07203-006
河北省高等学校科学技术研究重点项目ZD2016154
河北省重点研发计划项目18273615D
河北省科技计划项目15274015D
河北地质大学国家预研项目KY201702国家水体污染控制与治理科技重大专项(2012ZX07203-006)
河北省高等学校科学技术研究重点项目(ZD2016154)
河北省重点研发计划项目(18273615D)
河北省科技计划项目(15274015D)
河北地质大学国家预研项目(KY201702)




Biochar preparation from penicillin residues treatment under different hydrothermal carbonization conditions

ZHAO Zhirui1,2,3,4,,
ZHAO Xiumei5,
YAN Jiachen1,
LI Duo1,2,
ZHANG Jiayao1,4,
SHAN Baoqing4,
1.College of Water Resources and Environment, Hebei Geo University, Shijiazhuang 050031, China
2.Hebei Province Key Laboratory of Sustainable Use and Development of Water Resources, Shijiazhuang 050031, China
3.Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Shijiazhuang 050031, China
4.Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
5.North China Pharmaceutical Company Ltd., Shijiazhuang 050015, China

-->

摘要
HTML全文
(0)(0)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了考察不同水热炭化条件处理青霉素菌渣制备的生物炭特征,采用菌渣中分别添加氯化钠、柠檬酸和硝酸铁为添加剂和分别设置不同温度的方法,分析不同温度、不同添加剂对水热炭化产物特征的影响。结果表明, 在210 ℃时,各种样品的干重产率较高。对于水热产物结构,RNa温度最佳为210 ℃;RAc和RFe最佳温度为180 ℃。在180 ℃时,RH产物孔径平均当量直径最大为3.61 μm;RNa、RAc、RFe变化不大,分别为3.08、3和3.16 μm,变化幅度小于0.2 μm;在210 ℃时,对照产物孔径平均当量直径大于180 ℃时产物为3.94 μm;而RNa为2.99 μm,RAc、RFe孔径依次减小,为别为2.33 μm和1.84 μm。添加剂对产物孔径平均当量直径有影响,而添加剂种类影响不大;温度变化对RNa产物孔径平均当量直径影响不大,对RFe产物影响最明显。
关键词: 制药工业污染防治/
水热炭化/
青霉素菌渣资源化/
生物炭制备

Abstract:In order to investigate the biochar characteristics prepared from penicillin residues under different hydrothermal carbonization conditions, the effects of additives such as sodium chloride, citric acid or ferric nitrate, and temperature on the characteristics of hydrothermal carbonization products were determined. The results showed that the highest dry weight production rates for various samples occurred at 210 ℃. The optimum hydrothermal product structures happened at 210 ℃ for RNa or 180 ℃ for RAc and RFe. At the temperature of 180 ℃, the average equivalent pore diameter of RH was the highest with a value of 3.61 μm, while such diameters of RNa, RAc and RFe presented slight changes within ranges less than 0.2 μm, and were 3.08, 3 and 3.16 μm, respectively. The average equivalent pore diameter of the control product at 210 ℃ was larger than that at 180 ℃ and its value was 3.94 μm. At this temperature, the average equivalent pore diameter of RNa was 2.99 μm, for RAc and RFe, their diameters decreased in turn and were 2.33 μm and 1.84 μm, respectively. The results show that the additives had effects on the average equivalent pore diameters of the products, but their type had slight effects. The temperature change had slight effect on the average equivalent pore diameter of RNa product, but had an obvious effect on RFe product.
Key words:pollution prevention in pharmaceutical industry/
hydrothermal carbonization/
resource recycling of penicillin residues/
biochar preparation.

加载中
[1] 成建华, 张文莉. 抗生素菌渣处理工艺设计[J]. 医药工程设计, 2003, 24(2): 31-34.
[2] 贡丽鹏, 郭斌, 任爱玲, 等. 抗生素菌渣理化特性[J]. 河北科技大学学报, 2012, 33(2): 190-196.
[3] 乔巴诺格劳斯, 克赖特. 固体废弃管理手册[M]. 北京: 化学工业出版社, 2006.
[4] 张宏, 李玉友, 裴梦福. COD/SO42-对青霉素菌渣厌氧消化影响[J]. 环境科学, 2018, 9(7): 3461-3465.
[5] 杨黎俊, 姚宏, 裴晋, 等. 热水解预处理对制药菌渣厌氧消化产甲烷性能的影响[J]. 环境工程学报, 2018, 12(8): 2388-2394.
[6] 李再兴, 田宝阔, 左剑恶, 等. 抗生素菌渣处理处置技术进展[J]. 环境工程, 2012 , 30(2): 72-75.
[7] 阮南, 黄莉静, 徐萌. 青霉素菌渣固态发酵法生产菌体蛋白饲料的应用研究[J]. 河北工业科技, 2006, 23(2): 79-81.
[8] 张志宏, 李东霄, 常景玲. 红霉素菌渣生物改性研究[J]. 河南师范大学学报, 2009, 37(5): 168-170.
[9] 环境保护部. 国家危险废物名录: 环境保护部令 第39号[S]. 2016.
[10] GUO B, GONG L, DUAN E, et al. Characteristics of penicillin bacterial residue[J]. Journal of the Air & Waste Management Association, 2012 , 62(4): 485-488.
[11] MENG X L, MIAO Y, ZHU Y, et al. Study on the antibiotic bacterial residue for the human health risk assessment[J]. Advanced Materials Research, 2013, 788:476-479.
[12] 环境保护部. 制药工业污染防治技术政策: 环境保护部公告 第18号[S]. 2016.
[13] 吴静, 王广启, 曹知平, 等.“热水解-高温厌氧消化”工艺处理高含固率剩余污泥的中试研究[J]. 环境科学, 2014, 35(9): 3461-3465. .
[14] 卓杨, 韩芸, 程瑶, 等. 高含固污泥水热预处理中碳、 氮、 磷、硫转化规律[J]. 环境科学,2015, 36(3): 1006-1012.
[15] LIBRA J A, RO K S, KAMMANN C, et al. Hydrothermal carbonization of biomass residual: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis [J]. Biofuels, 2011, 2(1): 71-106.
[16] 荀锐, 王伟, 乔玮. 水热改性污泥的水分布特征与脱水性能研究[J]. 环境科学, 2009, 30(3): 851-856.
[17] 刘振刚, 张付申. 高压热水液化厨余垃圾的可行性研究[J]. 环境工程学报, 2008, 2(12) : 1681-1684.
[18] FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering[J]. Biofuels Bioproducts & Biorefining, 2010, 4(2): 160-177.
[19] 洪楠, 于宏兵, 薛旭方, 等. 餐厨垃圾中典型组分的裂解液化特征研究[J]. 环境工程学报, 2010, 4(5): 1161-1166.
[20] WANG X Q, WANG Q H, LIU Y Y, et al. Kinetics and thermodynamics of glucoamylase inhibition by lactate during fermentable sugar production from food waste[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(5): 687-692.
[21] HU B, WANG K, WU L H, et al. Engineering carbon materials from the hydrothermal carbonization process of biomass[J]. Advanced Materials, 2010, 22(7): 813-828.
[22] ZHANG F S, LIU Z G, WU J Z. Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment [J]. Fuel, 2010, 89(2): 510-514.
[23] YU G B,SUN B, PEI Y, et al. FexOy@ C spheres as an excellent catalyst for fischer-tropsch synthesis[J]. Journal of the American Chemical Society, 2010, 132(3): 935-937.
[24] AYALA P, ARENAL R, RUMMELI M, et al. The doping of carbon nanotubes with nitrogen and their potential applications[J]. Carbon, 2010, 48(3): 575-586.
[25] 田宝阔. 链霉素菌渣厌氧消化处理技术研究[D]. 石家庄: 河北科技大学, 2012.
[26] GANDINI A, BELGACEM M N. Furans in polymer chemistry[J]. Progress in Polymer Science, 1997, 22(6): 1203-1379.
[27] KUMAR P, KARMAKAR S, BOHIDAR H B. Anomalous self-aggregation of carbon nanoparticles in polar, nonpolar, and binary solvents[J]. Journal of Physical Chemistry C, 2008, 112(39): 15113-15121.
[28] 王蕾, 张福勒, 夏莉红, 等. 压泵法分析C-C复合材料平板的孔隙结构[J]. 矿冶工程, 2009, 29(4): 95-98.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:801
HTML全文浏览数:764
PDF下载数:94
施引文献:0
出版历程

刊出日期:2019-03-14




-->








不同水热炭化条件处理青霉素菌渣制备生物炭

赵志瑞1,2,3,4,,
赵秀梅5,
颜嘉晨1,
李铎1,2,
张佳瑶1,4,
单保庆4,
1.河北地质大学水资源与环境学院,石家庄 050031
2.河北省水资源可持续利用与开发重点实验室,石家庄 050031
3.河北省水资源可持续利用与产业结构优化协同创新中心,石家庄 050031
4.中国科学院生态环境研究中心,北京 100085
5.华北制药股份有限责任公司,石家庄 050015
基金项目: 国家水体污染控制与治理科技重大专项2012ZX07203-006 河北省高等学校科学技术研究重点项目ZD2016154 河北省重点研发计划项目18273615D 河北省科技计划项目15274015D 河北地质大学国家预研项目KY201702国家水体污染控制与治理科技重大专项(2012ZX07203-006) 河北省高等学校科学技术研究重点项目(ZD2016154) 河北省重点研发计划项目(18273615D) 河北省科技计划项目(15274015D) 河北地质大学国家预研项目(KY201702)
关键词: 制药工业污染防治/
水热炭化/
青霉素菌渣资源化/
生物炭制备
摘要:为了考察不同水热炭化条件处理青霉素菌渣制备的生物炭特征,采用菌渣中分别添加氯化钠、柠檬酸和硝酸铁为添加剂和分别设置不同温度的方法,分析不同温度、不同添加剂对水热炭化产物特征的影响。结果表明, 在210 ℃时,各种样品的干重产率较高。对于水热产物结构,RNa温度最佳为210 ℃;RAc和RFe最佳温度为180 ℃。在180 ℃时,RH产物孔径平均当量直径最大为3.61 μm;RNa、RAc、RFe变化不大,分别为3.08、3和3.16 μm,变化幅度小于0.2 μm;在210 ℃时,对照产物孔径平均当量直径大于180 ℃时产物为3.94 μm;而RNa为2.99 μm,RAc、RFe孔径依次减小,为别为2.33 μm和1.84 μm。添加剂对产物孔径平均当量直径有影响,而添加剂种类影响不大;温度变化对RNa产物孔径平均当量直径影响不大,对RFe产物影响最明显。

English Abstract






--> --> --> 参考文献 (28)
相关话题/科技 制药 生物 河北地质大学 工业