崔玉玮1,2,
李金龙1,2,
邓时海1,2,
杨雪1,2
1.北京交通大学土木建筑工程学院,北京100044
2.水中典型污染物控制与水质保障北京市重点实验室,北京100044
Nitrate deep removal of groundwater based on chemistry and biofilm coupling
LI Desheng1,2,,CUI Yuwei1,2,
LI Jinlong1,2,
DENG Shihai1,2,
YANG Xue1,2
1.School of Civil Engineering, Beijing Jiaotong University, Beijing 100044,China
2.Beijing Key Laboratory of Typical Pollution Control and Water Quality Protection in Water, Beijing 100044, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:我国华北地区超过80%的地下水受到污染,其中硝酸盐氮的污染日益严重,威胁着人类健康。基于单质铁去除地下水中硝酸盐氮,因伴随氨氮的产生而受限制;生物反硝化脱氮因地下水中碳源不足无法满足脱氮要求。采用自制的微电解化学催化固体颗粒与天然生物质构成耦合生物载体,通过自养与异养反硝化耦合深度脱除地下水中硝酸盐氮,并建立了地下水易位好氧、厌氧深度脱氮新工艺。结果表明:好氧反应器在HRT为12 h、DO为2.0~3.0 mg·L-1的条件下,硝酸盐氮平均去除率≥91.24%;厌氧反应器在HRT为14 h的条件下,硝酸盐氮平均去除率≥96.32%;反应器中微电解化学催化固体颗粒可为自养反硝化菌提供电子,生物质可为微生物提供必要的有限碳源,硝酸盐氮的脱除是自制微电解化学催化固体颗粒与生物膜耦合作用的结果。出水均无亚硝酸盐氮和氨氮积累。此技术可为受污染地下水的修复提供理论依据。
关键词: 地下水/
硝酸盐氮/
脱氮/
耦合生物载体/
好氧/
厌氧
Abstract:Currently, there is over 80% contaminated groundwater in north China. Among various pollutants, nitrate has become more and more serious and threatened human health. Usually, the nitrate was removed by zero-valent iron reduction method with ammonia production, which could not be efficiently removed by the biological denitrification method due to insufficient carbon sources in groundwater. Thus, in this study, a novel self-made biofilm carrier, which combined micro-electrolysis chemistry-catalyzed granule with natural biomass loofah, was developed for deep N removal in groundwater through autotrophic and heterotrophic denitrification coupling process. Then a new process for deep N removal was put forward for ex-situ aerobic or anaerobic denitrification, and the corresponding mechanism was discussed. The results showed that the average nitrate removal rate was higher than 91.24% in aerobic reactor at hydraulic retention time(HRT) of 12 hours and dissolved oxygen(DO) of 2.0 to 3.0 mg·L-1. Then the average nitrate removal rate reached above 96.32% in anaerobic reactor at the HRT of 14 hours. Moreover, the coupling functions of micro-electrolysis chemistry-catalyzed granule and biofilm contributed to nitrate removal in groundwater. Micro-electrolysis chemistry-catalyzed granule provided electrons for autotrophic denitrifying bacteria in biofilm, and natural loofah provided necessary carbon source for microorganism. Miseq high-throughput also revealed the dominant genus related to denitrifying. In addition, the effluent of the treatment process had no nitrite and ammonia accumulation. This new technology may provide theoretical basis for contaminated groundwater restoration.
Key words:groundwater/
nitrate/
denitrification/
coupled biofilm carrier/
aerobic/
anaerobic.
[1] | ZHANG Y, JI G D, WANG R J.Genetic associations as indices of nitrogen cycling rates in an aerobic denitrification biofilter used for groundwater[J].Bioresource Technology,2015,194:49-56 10.1016/j.biortech.2015.07.014 |
[2] | XIA S Q, WANG C H, XU X Y, et al.Bioreduction of nitrate in a hydrogen-based membrane biofilm reactor using CO2 for pH control and as carbon source[J].Chemical Engineering Journal,2015,276:59-64 10.1016/j.cej.2015.04.061 |
[3] | WAN R, ZHENG X, CHENG Y G, et al.Using cassava distiller’s dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater[J].Environmental Biotechnology,2015,99:2839-2847 10.1007/s00253-014-6155-z |
[4] | 张懿文, 罗建中, 陈宇阳. 我国水体中硝酸盐的污染现状及危害[J]. 广东化工,2015,42(14):99-100 |
[5] | 延利军. 水中硝酸盐污染现状、危害及脱除技术[J]. 城镇供水,2013(1):70-71 |
[6] | 闫素云, 匡颖, 张焕祯. 硝酸盐氮污染地下水修复技术[J]. 环境科技,2011,24(S2):7-9 |
[7] | 李德生, 胡倩怡, 崔玉玮, 等. 化学催化法脱除模拟地下水源中硝酸盐氮[J]. 化工学报,2015,66(6):2288-2294 |
[8] | ZHANG H N, WANG H Y, YANG K, et al.Nitrate removal by a novel autotrophic denitrifier (Microbacterium sp.) using Fe(Ⅱ) as electron donor[J].Annals of Microbiology,2014,65(2):1-10 10.1007/s13213-014-0952-6 |
[9] | 王曼曼. 固态碳源去除地下水源硝酸盐的模拟试验研究[D]. 合肥: 合肥工业大学,2012 |
[10] | SHEN Z Q, ZHOU Y X, HU J, et al.Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support[J].Journal of Hazardous Materials,2013,250-251(8):431-438 10.1016/j.jhazmat.2013.02.026 |
[11] | 李彭, 唐蕾, 左剑恶, 等. 以PHAs 为固体碳源的城镇二级出水深度脱氮研究[J]. 中国环境科学,2014,34(2):333-334 |
[12] | 李同燕, 李文奇, 胡伟武, 等. 玉米秆碳源去除地下水硝酸盐[J]. 环境工程学报,2015,9(9):4247-4248 |
[13] | 蓝梅, 董萌, 吴宏举. 地下水源硝酸盐氮污染原位修复研究进展[J]. 工业水处理,2015,35(8):15-17 |
[14] | 赵文莉, 郝瑞霞, 王润众, 等. 复合碳源填料反硝化脱氮及微生物群落特性[J]. 中国环境科学,2015,35(10):3003-3004 |
[15] | PLUG B D, CIBATI A, TROIS C.The use of organic wastes at different degrees of maturity as carbon sources for denitrification of landfill leachate[J].Waste Management,2015,46:373-379 10.1016/j.wasman.2015.09.032 |
[16] | 李德生. 好氧低碳氮比污水氨氮直接脱氮生物颗粒载体及制备方法: CN201310093411.5[P]. 2013-06-12 |
[17] | 浮海梅, 王宏华. 浅谈地下水的硝酸盐污染[J]. 洛阳理工学院学报(自然科学版),2009,19(2):14-15 |
[18] | 国家环境保护总局. 水和废水监测分析方法[M]. 4 版. 北京: 中国环境科学出版社,2002 |
[19] | LI J L, LI D S, CUI Y W, et al.Micro-electrolysis/retinervus luffae-based simultaneous autotrophic and heterotrophic denitrification for low C/N wastewater treatment[J].Environmental Science and Pollution Research,2017,19:1-8 10.1007/s11356-017-9179-y |
[20] | YANG X L, JIANG Q, SONG H L, et al.Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR[J].Journal of Hazardous Materials,2015,283:186-192 10.1016/j.jhazmat.2014.09.036 |
[21] | 刘忻, 马鲁铭. 催化铁技术在脱氮除磷中的应用进展[J]. 工业水处理,2011,31(5):1-2 10.3969/j.issn.1005-829X.2011.05.001 |
[22] | 刘国秀, 程爱华, 王志盈. 微电解法强化生物脱氮的实验及反应特征分析[J]. 环境工程学报,2008,2(7):928-929 |
[23] | 王新奇, 程爱华. 生物海绵铁去除生活污水中氨氮的性能研究[J]. 科学技术与工程,2014,14(9):285-286 |
[24] | 黄国鑫, FALLOWFIEL D H, GUAN H, 等. 粒状铁与甲醇支持的生物-化学联用法去除富氧地下水源中硝酸盐[J]. 生态环境学报,2012,21(4):726-727 |
[25] | CHENG L L, YU L J, LI T M, et al.Effect of the adding proportion of slow-release carbon source ecological matrix on nitrogen removal efficiency and microorganism[J].Environmental Engineering,2017,35(11):4-5 10.1016/j.biortech.2014.05.043 |
[26] | 周欲飞. 电极生物膜组合工艺去除地下水源硝酸盐的试验研究[D]. 杭州: 浙江大学,2010 |
[27] | 汪洋, 黄延林, 文刚, 等. 地下水中锰对滤料表面氧化膜去除氨氮的影响[J]. 环境工程学报,2015,9(12):5737-5744 |
[28] | KARTAL B, KUENEN J G, VAN L M.Sewage treatment with anammox[J].Science,2010,328(5979):702-703 10.1126/science.1185941 |
[29] | 邢林, 汪家权. 生物反硝化墙去除地下水源中硝酸盐的研究[J]. 合肥工业大学学报(自然科学版),2008,31(10):1564-1565 |
[30] | 雷礼婧. 三维电极生物膜反应器自养脱氮的研究[D]. 重庆: 重庆大学,2013 |
[31] | ZHANG Q, JI F Y, XU X Y.Effects of physicochemical properties of poly-ε-caprolactone on nitrate removal efficiency during solid-phase denitrification[J].Chemical Engineering Journal,2015,283:604-613 10.1016/j.cej.2015.07.085 |
[32] | WANG Z, WANG Q, LI R H, et al.Nitrate-contaminated water remediation supported by solid organic carbon and ZVI-combined system[J].Water, Air Soil Pollution,2015,226(40):1-10 10.1007/s11270-015-2325-6 |
[33] | 王苏艳. 亚铁强化潜流人工湿地反硝化作用及机制[D]. 上海: 东华大学,2016 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1048
HTML全文浏览数:763
PDF下载数:120
施引文献:0
出版历程
刊出日期:2018-11-29
-->
基于化学与生物膜耦合深度脱除地下水中硝酸盐氮
李德生1,2,,崔玉玮1,2,
李金龙1,2,
邓时海1,2,
杨雪1,2
1.北京交通大学土木建筑工程学院,北京100044
2.水中典型污染物控制与水质保障北京市重点实验室,北京100044
基金项目:
关键词: 地下水/
硝酸盐氮/
脱氮/
耦合生物载体/
好氧/
厌氧
摘要:我国华北地区超过80%的地下水受到污染,其中硝酸盐氮的污染日益严重,威胁着人类健康。基于单质铁去除地下水中硝酸盐氮,因伴随氨氮的产生而受限制;生物反硝化脱氮因地下水中碳源不足无法满足脱氮要求。采用自制的微电解化学催化固体颗粒与天然生物质构成耦合生物载体,通过自养与异养反硝化耦合深度脱除地下水中硝酸盐氮,并建立了地下水易位好氧、厌氧深度脱氮新工艺。结果表明:好氧反应器在HRT为12 h、DO为2.0~3.0 mg·L-1的条件下,硝酸盐氮平均去除率≥91.24%;厌氧反应器在HRT为14 h的条件下,硝酸盐氮平均去除率≥96.32%;反应器中微电解化学催化固体颗粒可为自养反硝化菌提供电子,生物质可为微生物提供必要的有限碳源,硝酸盐氮的脱除是自制微电解化学催化固体颗粒与生物膜耦合作用的结果。出水均无亚硝酸盐氮和氨氮积累。此技术可为受污染地下水的修复提供理论依据。
English Abstract
Nitrate deep removal of groundwater based on chemistry and biofilm coupling
LI Desheng1,2,,CUI Yuwei1,2,
LI Jinlong1,2,
DENG Shihai1,2,
YANG Xue1,2
1.School of Civil Engineering, Beijing Jiaotong University, Beijing 100044,China
2.Beijing Key Laboratory of Typical Pollution Control and Water Quality Protection in Water, Beijing 100044, China
Keywords: groundwater/
nitrate/
denitrification/
coupled biofilm carrier/
aerobic/
anaerobic
Abstract:Currently, there is over 80% contaminated groundwater in north China. Among various pollutants, nitrate has become more and more serious and threatened human health. Usually, the nitrate was removed by zero-valent iron reduction method with ammonia production, which could not be efficiently removed by the biological denitrification method due to insufficient carbon sources in groundwater. Thus, in this study, a novel self-made biofilm carrier, which combined micro-electrolysis chemistry-catalyzed granule with natural biomass loofah, was developed for deep N removal in groundwater through autotrophic and heterotrophic denitrification coupling process. Then a new process for deep N removal was put forward for ex-situ aerobic or anaerobic denitrification, and the corresponding mechanism was discussed. The results showed that the average nitrate removal rate was higher than 91.24% in aerobic reactor at hydraulic retention time(HRT) of 12 hours and dissolved oxygen(DO) of 2.0 to 3.0 mg·L-1. Then the average nitrate removal rate reached above 96.32% in anaerobic reactor at the HRT of 14 hours. Moreover, the coupling functions of micro-electrolysis chemistry-catalyzed granule and biofilm contributed to nitrate removal in groundwater. Micro-electrolysis chemistry-catalyzed granule provided electrons for autotrophic denitrifying bacteria in biofilm, and natural loofah provided necessary carbon source for microorganism. Miseq high-throughput also revealed the dominant genus related to denitrifying. In addition, the effluent of the treatment process had no nitrite and ammonia accumulation. This new technology may provide theoretical basis for contaminated groundwater restoration.