王黎1,
陈小进1,
胡宁1,
李洋洋1
1.武汉科技大学资源与环境工程学院,武汉 430081
基金项目: 国家自然科学基金资助项目(51574185)
Effect of cathode size on the production of organic matter from carbon dioxide by microbial electrosynthesis system
ZHANG Pengcheng1,,WANG Li1,
CHEN Xiaojin1,
HU Ning1,
LI Yangyang1
1.College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:利用微生物电合成系统(microbial electrosynthesis system,MES)还原CO2合成有附加值的有机物是环境领域的热门研究方向。使用微生物电合成系统,驯化富集具有电化学活性的阴极功能微生物,通过调整阴极的大小,评价其对CO2还原的影响。设定阴极电势-0.8 V (vs Ag/AgCl),保持阳极面积为32 cm2,调整阴极面积大小。在64 cm2的阴极面积下,MES可以获得最大的有机物产量和最佳性能,电流密度可达到2.03 A·m-2,乙酸、丁酸的最大积累量分别为262.04 mg·L-1和87.63 mg·L-1,总库伦效率达到91%。扫描电镜SEM分析表明,阴极碳毡上菌体数量较多,多为杆状菌和球菌。高通量菌群分析表明,Clostridium、Butyribacterium和Geobacter是MES阴极生物膜上的优势菌属,其丰度分别占总菌群的48.13%、7.8%和8.2%。在保证较小阳极面积的同时,适当增大阴极面积,确实可以提高MES还原CO2合成有机物的产量及提升系统的库伦效率。
关键词: 微生物电合成系统/
二氧化碳/
阴极大小/
乙酸/
丁酸
Abstract:CO2 reduction to high value-added organics with microbial electrosynthesis system (MES) has been a popular research direction in environmental fields. This study evaluated the effect of cathode size on organics production from CO2 in a MES with a mixed-culture biocathode. When the biocathode potential and anode size were set at -0.8 V (vs Ag/AgCl) and 32 cm2, respectively, both the maximum organics production amount and the best energetic performances occurred for the MES with the adjusted cathode size of 64 cm2, the current density reached 2.03 A·m-2, the maximum concentration of acetic acid and butyrate was 262.04 mg·L-1 and 87.63 mg·L-1 during a reaction cycle of 10 days, respectively. The total electron recovery of MES reached 91%. Scanning electron microscope (SEM) confirmed that a variety of microorganisms, most of which were the rod and sphere morphologies, were attached on the cathode carbon felt. High-throughput analysis showed that the cathodic dominant bacterial community was Clostridium, Butyribacterium and Geobacter, and their abundance accounted for 48.13%, 7.8% and 8.2% of the total bacterial population, respectively. This research proved that the increase of the cathode size with a small anode size in MES can increase the high value-added organics yield and coulombic efficiency.
Key words:microbial electrosynthesis system/
carbon dioxide/
cathode size/
acetic acid/
butyrate.
[1] | SENBOKU H, KATAYAMA A.Electrochemical carboxylation with carbon dioxide[J].Current Opinion in Green and Sustainable Chemistry,2017,3:50-54 10.1016/j.cogsc.2016.10.003 |
[2] | BAJRACHARYA S, SRIKANTH S, MOHANAKRISHNA G, et al.Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects[J].Journal of Power Sources,2017,356:256-273 10.1016/j.jpowsour.2017.04.024 |
[3] | LEHTINEN T, EFIMOVA E, TREMBLAY P, et al.Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process[J].Bioresource Technology,2017,243:30-36 10.1016/j.biortech.2017.06.073 |
[4] | IBRAM G.Electrochemical conversion of carbon dioxide into renewable fuel chemicals:The role of nanomaterials and the commercialization[J].Renewable and Sustainable Energy Reviews,2016,59:1269-1297 10.1016/j.rser.2016.01.026 |
[5] | QI S, HUANG X F, LIU J, et al.Biomimetic photoelectrocatalytic conversion of greenhouse gas carbon dioxide: Two-electron reduction for efficient formate production[J].Applied Catalysis B: Environmental,2017,201:70-76 10.1016/j.apcatb.2016.08.008 |
[6] | BATLLE-VILANOVA P, GANIGUé R, RAMIó-PUJOL S, et al.Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction[J].Bioelectrochemistry,2017,117:57-64 10.1016/j.bioelechem.2017.06.004 |
[7] | CHENG S, XING D, CALL D F, et al.Direct biological conversion of electrical current into methane by electromethanogenesis[J].Environmental Science & Technology,2009,43(10):3953-3958 10.1021/es803531g |
[8] | RISMANI-YAZDI H, CARVER S M, CHRISTY A D, et al.Cathodic limitations in microbial fuel cells: An overview[J].Journal of Power Sources,2008,180(2):683-694 10.1016/j.jpowsour.2008.02.074 |
[9] | FAST A G, PAPOUTSAKIS E T.Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals[J].Current Opinion in Chemical Engineering,2012,1(4):380-395 10.1016/j.coche.2012.07.005 |
[10] | SUGNAUX M, HAPPE M, CACHELIN C P, et al.Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell[J].Bioresource Technology,2016,221(Supplement C):61-69 10.1016/j.biortech.2016.09.020 |
[11] | HASANY M, MARDANPOUR M M, YAGHMAEI S.Biocatalysts in microbial electrolysis cells: A review[J].International Journal of Hydrogen Energy,2016,41(3):1149-1477 10.1016/j.ijhydene.2015.10.097 |
[12] | XIANG Y, LIU G, ZHANG R, et al.Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J].Bioresource Technology,2017,241(Supplement C):821-829 10.1016/j.biortech.2017.06.017 |
[13] | BATLLE-VILANOVA P, GANIGUé R, RAMIó-PUJOL S, et al.Microbial electrosynthesis of butyrate from carbon dioxide: Production and extraction[J].Bioelectrochemistry,2017,117(Supplement C):57-64 10.1016/j.bioelechem.2017.06.004 |
[14] | CALL D F, MERRILL M D, LOGAN B E.High surface area stainless steel brushes as cathodes in microbial electrolysis cells[J].Environmental Science & Technology, 2009,43(6):2179-2183 10.1021/es803074x |
[15] | GILCARRERA L, MEHTA P, ESCAPA A, et al.Optimizing the electrode size and arrangement in a microbial electrolysis cell[J].Bioresource Technology,2011,102(20):9593-9598 10.1016/j.biortech.2011.08.026 |
[16] | RIVERA I, BAKONYI P, BUITRóN G.H2 production in membraneless bioelectrochemical cells with optimized architecture: The effect of cathode surface area and electrode distance[J].Chemosphere,2017,171:379-385 10.1016/j.chemosphere.2016.12.061 |
[17] | 杨仁灿,孙和临,杨梅宏. 气相色谱法测定MEC反应液中挥发性有机酸[J]. 化学研究与应用2017,29(7):962-967 |
[18] | BAJRACHARYA S, TER H A, DOMINGUEZ B X, et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode[J].Bioresource Technology,2015,195:14-24 10.1016/j.biortech.2015.05.081 |
[19] | VILLANO M, AULENTA F, CIUCCI C, et al.Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic cultureerostructure arrays[J].Journal of Physical Chemistry C,2013,117:11553-15523 10.1021/jp4039573 |
[20] | HAMELERS H V, TER H A, SLEUTELS T H, et al.New applications and performance of bioelectrochemicalsystems[J].Applied Microbiology and Biotechnology,2010,85(6):1673-1685 10.1007/s00253-009-2357-1 |
[21] | ZHAO H Z, ZHANG Y, CHANG Y Y, et al.Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells[J].Journal of Power Sources,2012,217(11):59-64 10.1016/j.jpowsour.2012.06.014 |
[22] | ZHAO H, ZHANG Y, ZHAO B, et al.Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode[J].Environmental Science & Technology,2012,46(9):5024-5198 10.1021/es300186f |
[23] | LOGAN B E, CALL D, CHENG S, et al.Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J].Environmental Science & Technology,2008,42(23):8630-8864 10.1021/es801553z |
[24] | JIANG Y, SU M, ZHANG Y, et al.Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate[J].International Journal of Hydrogen Energy,2013,38(8):3497-3502 10.1016/j.ijhydene.2012.12.107 |
[25] | NEVIN K P, HENSLEY S A, FRANKS A E, et al.Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenicmicroorganisms[J].Applied and Environmental Microbiology,2011,77:2882-2886 10.1128/AEM.02642-10 |
[26] | BAJRACHARYA S, TER H A, DOMINGUEZ B X, et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless |
Turn off MathJax -->
点击查看大图
计量
文章访问数:876
HTML全文浏览数:718
PDF下载数:90
施引文献:0
出版历程
刊出日期:2018-11-29
-->
阴极大小对微生物电合成系统还原二氧化碳产有机物的影响
张鹏程1,,王黎1,
陈小进1,
胡宁1,
李洋洋1
1.武汉科技大学资源与环境工程学院,武汉 430081
基金项目: 国家自然科学基金资助项目(51574185)
关键词: 微生物电合成系统/
二氧化碳/
阴极大小/
乙酸/
丁酸
摘要:利用微生物电合成系统(microbial electrosynthesis system,MES)还原CO2合成有附加值的有机物是环境领域的热门研究方向。使用微生物电合成系统,驯化富集具有电化学活性的阴极功能微生物,通过调整阴极的大小,评价其对CO2还原的影响。设定阴极电势-0.8 V (vs Ag/AgCl),保持阳极面积为32 cm2,调整阴极面积大小。在64 cm2的阴极面积下,MES可以获得最大的有机物产量和最佳性能,电流密度可达到2.03 A·m-2,乙酸、丁酸的最大积累量分别为262.04 mg·L-1和87.63 mg·L-1,总库伦效率达到91%。扫描电镜SEM分析表明,阴极碳毡上菌体数量较多,多为杆状菌和球菌。高通量菌群分析表明,Clostridium、Butyribacterium和Geobacter是MES阴极生物膜上的优势菌属,其丰度分别占总菌群的48.13%、7.8%和8.2%。在保证较小阳极面积的同时,适当增大阴极面积,确实可以提高MES还原CO2合成有机物的产量及提升系统的库伦效率。
English Abstract
Effect of cathode size on the production of organic matter from carbon dioxide by microbial electrosynthesis system
ZHANG Pengcheng1,,WANG Li1,
CHEN Xiaojin1,
HU Ning1,
LI Yangyang1
1.College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
Keywords: microbial electrosynthesis system/
carbon dioxide/
cathode size/
acetic acid/
butyrate
Abstract:CO2 reduction to high value-added organics with microbial electrosynthesis system (MES) has been a popular research direction in environmental fields. This study evaluated the effect of cathode size on organics production from CO2 in a MES with a mixed-culture biocathode. When the biocathode potential and anode size were set at -0.8 V (vs Ag/AgCl) and 32 cm2, respectively, both the maximum organics production amount and the best energetic performances occurred for the MES with the adjusted cathode size of 64 cm2, the current density reached 2.03 A·m-2, the maximum concentration of acetic acid and butyrate was 262.04 mg·L-1 and 87.63 mg·L-1 during a reaction cycle of 10 days, respectively. The total electron recovery of MES reached 91%. Scanning electron microscope (SEM) confirmed that a variety of microorganisms, most of which were the rod and sphere morphologies, were attached on the cathode carbon felt. High-throughput analysis showed that the cathodic dominant bacterial community was Clostridium, Butyribacterium and Geobacter, and their abundance accounted for 48.13%, 7.8% and 8.2% of the total bacterial population, respectively. This research proved that the increase of the cathode size with a small anode size in MES can increase the high value-added organics yield and coulombic efficiency.