闫坤朋1,
宋志文1,
李春蕊1,
徐爱玲1
1.青岛理工大学环境与市政工程学院,青岛266033
基金项目: 山东省重点研发计划(公益类专项)(2018GSF117022)
山东省重点研发计划项目(2017GSF220001)
国家自然科学基金资助项目(31570541, 31170509)
山东省自然科学基金资助项目(2015ZRB01546)
Water purification of marine aquaculture system based on different fillers
DUAN Songqing1,,YAN Kunpeng1,
SONG Zhiwen1,
LI Chunrui1,
XU Ailing1
1.Institute of Environment and Municipal Engineering,Qingdao University of Technological, Qingdao 266033, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:氨和亚硝酸盐是海水养殖系统的主要有毒物质,两者的高效去除是水产养殖领域的主要目标。为得到一种安全、高效、经济的海水养殖系统,建立了由3种不同填料构建的海水养殖系统,对在海水盐度与循环流水的胁迫下滴流滤器硝化功能的建立与运行状况进行了研究,并用高通量测序的方法对系统中具有硝化功能的种群结构进行分析。结果表明,在挂膜阶段,以3D益菌屋为填料的滤器硝化功能建立最快,陶瓷生物珠次之,中空培菌球最慢。不同填料对挂膜成熟后的滴流滤器的硝化速率有较大影响,对氨氮和亚硝氮去除效果由高到低的顺序是:3D益菌屋>陶瓷生物珠>中空培菌球。水力负荷对不同填料的影响不同,以3D益菌屋和中空培菌球为填料的滤器对氨氮去除效果随水力负荷增加而增强,在水力负荷为93.56 m3·(m3·h)-1时效果最优,而以陶瓷生物珠为填料的滤器在水力负荷为46.78 m3·(m3·h)-1时效果最优。滤器中共检测出以亚硝化单胞菌属(Nitrosomonas)、硝化球菌属(Nitrococcus)、硝化刺菌属(Nitrospina)、硝化螺旋菌属(Nitrospira)为主体的7种具有硝化功能的菌群,3种滤器中硝化细菌占比差距较大,分别为7.73%、2.06%和1.46%,硝化速率与硝化细菌占比呈正相关。
关键词: 海水养殖/
生物滤器/
硝化功能/
微生物群落结构
Abstract:Ammonia and nitrite are the main toxic substances in the mariculture, and the removal of them is the main objective of aquaculture. In order to obtain a safe, efficient, and economical marine aquaculture system, aquaculture systems constructed with three different types of fillers was established. The establishment and operation of nitrification function of drip filter in the salinity of seawater and the stress of circulating water were investigated, and the diversity and community composition of bacteria with nitrification function in the system was analyzed by high throughput sequencing. The results showed that, in the biofilm establishment phase, the nitrification function of the filter with 3D beneficial bacteria house as the filler was the fastest, followed by the ceramic bio-beads, and the hollow bacillus ball was the slowest. The effects of fillers on the nitrification rate of the film-formed dropping filter were different. The order of the removal of ammonia nitrogen and nitrous oxide is 3D beneficial bacteria house>ceramic bio-beads > hollow bacteria ball. The effect of the hydraulic load on the removal efficiency of ammonia nitrogen varied in different filter. The removal efficiency of ammonia nitrogen increased with the increasing of the hydraulic load in the system with 3D beneficial bacteria house and hollow bacteria ball, and the effect was optimal when the hydraulic load is 93.56 m3·(m3·h)-1. The system with ceramic bio-beads as the filler achieved the best effect when the hydraulic load was 46.78 m3·(m3·h)-1. Seven nitrobacteria were detected in the biofilter, of which Nitrosomonas, Nitrococcus, Nitrospina and Nitrospir were dominated. The proportion of nitrifying bacteria in the three kinds of filters was 7.73%, 2.06% and 1.46%, respectively. The nitrification rate was positively correlated with the proportion of nitrifying bacteria.
Key words:marine aquaculture/
biological filter/
nitrifying function/
microbial community structure.
[1] | MOOK W T, CHAKRABARTI M H, AROUA M K, et al.Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review[J].Desalination,2012,285(3):1-13 10.1016/j.desal.2011.09.029 |
[2] | 魏大鹏,单洪伟,马甡. 复合载体固定化细菌降解养殖水体中氨氮和亚硝酸盐氮的研究[J]. 渔业现代化,2014,41(3):11-14 |
[3] | 玲,楚国生.封闭循环养殖系统氨氮和亚硝酸盐去除效果研究[J]. 吉林水利,2010(2):34-38 |
[4] | 宋志文,王玮,赵丙辰,等. 海水养殖废水的生物处理技术研究进展[J]. 青岛理工大学学报,2006,27(1):13-17 |
[5] | GROMMEN R, DAUW L, VERSTRAETE W.Elevated salinity selects for a less diverse ammonia-oxidizing population in aquarium biofilters[J].FEMS Microbiology Ecology,2005,52(1):1-11 10.1016/j.femsec.2004.10.001 |
[6] | GROMMEN R, IVAN H, MVAN W, et al.An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems[J].Aquaculture,2002,211(1/2/3/4):115-124 10.1016/S0044-8486(01)00883-3 |
[7] | 王琳,孔小蓉,周洋,等. 4种填料构建海水养殖系统硝化动力学的比较研究[J]. 河北渔业,2014(9):3-5 |
[8] | 孔小蓉,宋志文,周洋,等. 不同基质构建海水水族箱硝化功能建立过程的比较研究[J]. 河北渔业,2009(12):11-14 |
[9] | 宋奔奔,刘鹰,石芳永,等. 四种填料滤器处理养鱼废水的硝化性能[J]. 农业工程学报,2010,26(11):231-236 |
[10] | 朱松明. 循环水养殖系统中生物过滤器技术简介[J]. 渔业现代化,2006(2):16-18 |
[11] | 王玮,谭潇也,孙贤风,等. 海洋硝化细菌富集培养过程研究[J]. 青岛理工大学学报,2006,27(3):67-70 |
[12] | 张健,章文军,裘琼芬,等. 氨氮次溴酸钠氧化测定法的改良[J]. 环境科学与技术,2011,34(11):126-129 |
[13] | 国家环境保护局. 水质亚硝酸盐氮的测定 分光光度法:GB7493-1987[S]. 北京:中国标准出版社,1987 |
[14] | 齐巨龙,赖铭勇,谭洪新,等. 预培养生物膜法在海水循环水养殖系统中的应用效果[J]. 渔业现代化,2010,37(2):14-18 |
[15] | LEKESIZ T O, KAYRAN C, HACALOGLU J.Single-step nitrification models erroneously describe batch ammonia oxidation profiles when nitrite oxidation becomes rate limiting[J].Biotechnology & Bioengineering,2000,68(4):396-406 10.1002/(SICI)1097-0290(20000520)68:4<396::AID-BIT5>3.0.CO;2-S |
[16] | 张俊新,魏海峰,何洁,等. 用煤渣和沸石处理海水养殖废水的挂膜动力学研究[J]. 大连海洋大学学报,2008,23(3):205-209 |
[17] | 王贤丰. 生物膜处理系统在对虾养殖排放水处理中应用的研究[D]. 青岛:中国海洋大学,2015 |
[18] | 傅雪军,马绍赛,曲克明,等. 循环水养殖系统生物挂膜的消氨效果及影响因素分析[J]. 渔业科学进展,2010,31(1):95-99 |
[19] | 沈加正,史明明,阮贇杰,等. 变速流操作调控循环水养殖系统水质效果研究[J]. 农业机械学报,2016,47(7):309-314 |
[20] | 邹海明,谢越,王艳,等. 水力负荷和回流比对前置反硝化BAF系统处理玉米青贮液的影响[J]. 环境工程学报,2013,7(10):3939-3945 |
[21] | GARRITY G M, BELL J A, LILBURN TG, et al.Bergey's Manual of Systematic Bacteriology [M].Second Edition.USA, Library of Congress Cataloging-in-Publication Data,2004:137-149 1 USA, Library of Congress Cataloging-in-Publication Data,2004 |
[22] | 刘志培,刘双江. 硝化作用微生物的分子生物学研究进展[J]. 应用与环境生物学报,2004,10(4):521-525 |
[23] | TAL Y, JEM W, SCHREIER S B, et al.Characterization of the microbial community and nitrogen transformation processes associated with moving bed bioreactors in a closed recirculated mariculture system[J].Aquaculture,2003,215(1/2/3/4): 187-202 10.1016/ S0044-8486(02)00372-1 |
[24] | 岳秀,刘竹寒,于广平,等.SBAF单级自养脱氮快速启动、稳定运行及微生物群落演化[J]. 环境科学,2017,38(12):1-13 13227/j.hjkx.201704255 |
[25] | SOMASUNDARAM K, El-DEIRY W S.Characterization of nitrifying bacteria in marine recirculation aquaculture systems with regard to process optimization[J].Journal of Biomedical Optics,2012,14(9):1047-57 10.1038/sj.onc.1201002 |
[26] | 陈捷音.水中亚硝化细菌和硝化细菌检测方法的探讨[J]. 环境监测管理与技术,2007, 19 (3):49-51 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1187
HTML全文浏览数:935
PDF下载数:157
施引文献:0
出版历程
刊出日期:2018-08-17
-->
基于不同填料的海水养殖系统的水质净化
段松青1,,闫坤朋1,
宋志文1,
李春蕊1,
徐爱玲1
1.青岛理工大学环境与市政工程学院,青岛266033
基金项目: 山东省重点研发计划(公益类专项)(2018GSF117022) 山东省重点研发计划项目(2017GSF220001) 国家自然科学基金资助项目(31570541, 31170509) 山东省自然科学基金资助项目(2015ZRB01546)
关键词: 海水养殖/
生物滤器/
硝化功能/
微生物群落结构
摘要:氨和亚硝酸盐是海水养殖系统的主要有毒物质,两者的高效去除是水产养殖领域的主要目标。为得到一种安全、高效、经济的海水养殖系统,建立了由3种不同填料构建的海水养殖系统,对在海水盐度与循环流水的胁迫下滴流滤器硝化功能的建立与运行状况进行了研究,并用高通量测序的方法对系统中具有硝化功能的种群结构进行分析。结果表明,在挂膜阶段,以3D益菌屋为填料的滤器硝化功能建立最快,陶瓷生物珠次之,中空培菌球最慢。不同填料对挂膜成熟后的滴流滤器的硝化速率有较大影响,对氨氮和亚硝氮去除效果由高到低的顺序是:3D益菌屋>陶瓷生物珠>中空培菌球。水力负荷对不同填料的影响不同,以3D益菌屋和中空培菌球为填料的滤器对氨氮去除效果随水力负荷增加而增强,在水力负荷为93.56 m3·(m3·h)-1时效果最优,而以陶瓷生物珠为填料的滤器在水力负荷为46.78 m3·(m3·h)-1时效果最优。滤器中共检测出以亚硝化单胞菌属(Nitrosomonas)、硝化球菌属(Nitrococcus)、硝化刺菌属(Nitrospina)、硝化螺旋菌属(Nitrospira)为主体的7种具有硝化功能的菌群,3种滤器中硝化细菌占比差距较大,分别为7.73%、2.06%和1.46%,硝化速率与硝化细菌占比呈正相关。
English Abstract
Water purification of marine aquaculture system based on different fillers
DUAN Songqing1,,YAN Kunpeng1,
SONG Zhiwen1,
LI Chunrui1,
XU Ailing1
1.Institute of Environment and Municipal Engineering,Qingdao University of Technological, Qingdao 266033, China
Keywords: marine aquaculture/
biological filter/
nitrifying function/
microbial community structure
Abstract:Ammonia and nitrite are the main toxic substances in the mariculture, and the removal of them is the main objective of aquaculture. In order to obtain a safe, efficient, and economical marine aquaculture system, aquaculture systems constructed with three different types of fillers was established. The establishment and operation of nitrification function of drip filter in the salinity of seawater and the stress of circulating water were investigated, and the diversity and community composition of bacteria with nitrification function in the system was analyzed by high throughput sequencing. The results showed that, in the biofilm establishment phase, the nitrification function of the filter with 3D beneficial bacteria house as the filler was the fastest, followed by the ceramic bio-beads, and the hollow bacillus ball was the slowest. The effects of fillers on the nitrification rate of the film-formed dropping filter were different. The order of the removal of ammonia nitrogen and nitrous oxide is 3D beneficial bacteria house>ceramic bio-beads > hollow bacteria ball. The effect of the hydraulic load on the removal efficiency of ammonia nitrogen varied in different filter. The removal efficiency of ammonia nitrogen increased with the increasing of the hydraulic load in the system with 3D beneficial bacteria house and hollow bacteria ball, and the effect was optimal when the hydraulic load is 93.56 m3·(m3·h)-1. The system with ceramic bio-beads as the filler achieved the best effect when the hydraulic load was 46.78 m3·(m3·h)-1. Seven nitrobacteria were detected in the biofilter, of which Nitrosomonas, Nitrococcus, Nitrospina and Nitrospir were dominated. The proportion of nitrifying bacteria in the three kinds of filters was 7.73%, 2.06% and 1.46%, respectively. The nitrification rate was positively correlated with the proportion of nitrifying bacteria.