王新伟2,3,
蔡婷1,
邹洪媛2,3,
杨永森1,
艾佳臻2,3,
肖萌4
1.中国石油大学北京地球科学学院,北京 102249
2.中国石油大学北京化学工程与环境学院,北京 102249
3.北京市油气污染与防治实验室,北京 102249
4.中国地质大学北京水资源与环境学院,北京 100083
基金项目: 国家自然科学基金资助项目(41403067)
Factors optimization for multi-strain biodegradation of petroleum under the effect of surfactin
WEN Weitao1,,WANG Xinwei2,3,
CAI Ting1,
ZOU Hongyuan2,3,
YANG Yongsen1,
AI Jiazhen2,3,
XIAO Meng4
1.College of Geosciences, China University of Petroleum Beijing, Beijing 102249, China
2.College of Chemical Engineering and Enviroment, China University of Petroleum Beijing, Beijing 102249, China
3.Beijing Key Laboratory of Oil and Gas Pollution Control, Beijing 102249, China
4.School of Water Resource and Environment, China University of GeosciencesBeijing, Beijing 100083, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:探索多种菌种降解石油过程中菌种和脂肽生物表面活性剂的作用,筛选石油降解的主要影响因素及最佳组合,并为石油污染物的降解机理研究和石油污染修复提供指导。基于正交实验筛选主要影响因素,采用Box-Behnken实验探讨各因素最佳水平。正交实验中脂肽生物表面活性剂是多菌种降解石油过程中最主要的影响因素,在Box-Behnken实验中,其能显著地影响石油降解率。菌种降解能力是石油饱和烃组分生物降解的最主要影响因素,但脂肽生物表面活性剂是芳烃、胶质和沥青质组分降解的最主要的影响因素。研究所用菌种中,解淀粉芽孢杆菌(Bacillus amyloliquefaciens)和假单胞菌(Pseudomonas aeruginosa)在石油降解过程最重要,是本实验的石油降解最优菌。菌种和脂肽生物表面活性剂的添加浓度配比对于石油降解具有重要的影响。解淀粉芽孢杆菌和假单胞菌添加量5%,脂肽生物表面活性剂粗品添加量200 mg·L-1的降解效果最优,理论上,最高降解率可达63.78%,验证降解率达到了53.89%,相对于多菌种正交实验最高降解率提高了5.54%。利用正交实验和Box-Behnken实验筛选最优降解菌和最优菌种组合的方法,具有分析因素多、实验量少等优点,具有较好的应用前景。
关键词: 脂肽生物表面活性剂/
多菌种降解/
降解条件优化
Abstract:The study on the effects of strains and surfactin on the multi-strain biodegradation of petroleum could screen the main factors and their best combination, then provide guidelines for determining the petroleum biodegradation mechanisms and remediation of petroleum contaminated media. In this study, based on orthogonal test, surfactin was screened as the main influence factor on the multi-strain degradation of oil. Box-Behnken test was used to explore the optimal level of each factor, and found that surfactin could significantly significantly affect the oil degradation rate. The bacteria species was the main factor affecting the biodegradation of saturated hydrocarbons. However, the biodegradation of aromatic hydrocarbons, resins and asphaltenes was dependent on surfactin. Among 10 species of bacteria, Bacillus amyloliquefaciens and Pseudomonas aeruginosa showed the important performance on oil degradation, and were the best oil degradation bacteria. In addition, the concentration ratio of bacteria and surfactin had an important effect on oil degradation. The optimum oil degradation were achieved at 5% inoculation of Bacillus amyloliquefaciens and Pseudomonas aeruginos, and surfactin dosage of 200 mg·L-1, and the theoretical prediction maximum oil degredation rate could reach 63.78%. The corresponding rate verified by the experiment was 53.89%, which was 5.54% higher than the highest degradation rate based on orthogonal experiments. Therefore, the orthogonal and Box-Behnken experiments could screen and combine the optimum oil-degrading bacteria, which have some advantages of analyzing many factors and conduct a few of experiments, and have a good application prospect.
Key words:surfactin/
multi-strain degradation/
degradation condition optimization.
[1] | 郭萍,李红娜, 李峰, 等.石油污染微生物修复技术研究进展[J]. 生物技术通报,2017,33(10):18-25 |
[2] | RAHMAN K S, RAHMAN T J, KOURKOUTAS Y, et al.Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients[J].Bioresource Technology,2003,90(2):159-168 10.1016/S0960-8524(03)00114-7 |
[3] | THRONEHOLST M, WENTZEL A, ELLINGSEN T E, et al.Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp.strain DSM 17874[J].Applied & Environmental Microbiology,2007,73(10):3325-3327 10.1128/AEM.00064-07 |
[4] | SUPAPHOL S, PANICHSAKPATANA S, TRAKULNALEAMSAI S, et al.The selection of mixed microbial inocula in environmental biotechnology: Example using petroleum contaminated tropical soils[J].Journal of Microbiological Methods,2006,65(3):432-441 10.1016/j.mimet.2005.09.001 |
[5] | RAHMAN K S, THAHIRA-RAHMAN J, LAKSHMANAPERUMALSAMY P, et al.Towards efficient crude oil degradation by a mixed bacterial consortium[J].Bioresource Technology,2002,85(3):257-261 10.1016/S0960-8524(02)00119-0 |
[6] | 何丽媛, 党志, 唐霞, 等.混合菌对原油的降解及其降解性能的研究[J]. 环境科学学报,2010,30(6):1220-1227 |
[7] | OWEN M L, OOLMAN T, CASTALDI F J, et al.Biotreat oily refinery wastes[J].Hydrocarbon Processing,1992,71(8):67-69 |
[8] | VAN HAMME J D, WARD O P.Physical and metabolic interactions of Pseudomonas sp.strain JA5-B45 and Rhodococcus sp.strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them[J].Applied & Environmental Microbiology,2001,67(10):4874-4879 10.1128/AEM.67.10.4874-4879.2001 |
[9] | BURD G, WARD O P.Bacterial degradation of polycyclic aromatic hydrocarbons on agar plates: The role of biosurfactants[J].Biotechnology Techniques,1996,10(5):371-374 10.1007/BF00173258 |
[10] | 梁生康, 王修林, 单宝田.生物表面活性剂强化疏水性有机污染物生物降解研究进展[J]. 化工环保,2005,25(4):276-280 |
[11] | 王新伟, 蔡婷, 刘宇, 等.稠油重质组分微生物降解作用研究进展[J]. 生态环境学报,2013,22(7):1255-1262 |
[12] | DAS K, MUKHERJEE A K.Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India[J].Bioresource Technology,2007,98(7):1339-1345 10.1016/j.biortech.2006.05.032 |
[13] | ASSADI M M, TABATABAEE M S.Biosurfactants and their use in upgrading petroleum vacuum distillation residue: A review[J].International Journal of Environmental Research,2010,4(4):549-572 10.22059/ijer.2010.242 |
[14] | 齐义彬, 王大威, 吴萌萌, 等.胶质降解和生物乳化在稠油降黏中的作用[J]. 石油学报,2012,33(4):670-675 |
[15] | 张晓博, 洪帅, 姜晗, 等.微生物对稠油降解、降粘作用研究进展[J]. 当代化工,2016,45(3):617-621 |
[16] | HARITASH A K, KAUSHIK C P.Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review[J].Journal of Hazardous Materials,2009,169(1/2/3):1-15 10.1016/j.jhazmat.2009.03.137 |
[17] | SCHIPPERS A, BOSECKER K, SPR?ER C, et al.Microbacterium oleivorans sp.nov.and Microbacterium hydrocarbonoxydans sp.nov., novel crude-oil-degrading Gram-positive bacteria[J].International Journal of Systematic & Evolutionary Microbiology,2005,55:655 10.1099/ijs.0.63305-0 |
[18] | 刘虹, 杨元元, 刘娜, 等.两种石油烃降解菌的鉴定及其对石油烃底物的降解[J]. 环境污染与防治,2016,38(6):28-33 |
[19] | 程晓暄, 刘昱, 张枝焕, 等.土壤中多环芳烃微生物降解能力模拟[J]. 环境科学研究,2017,30(9):1373-1381 |
[20] | CAI T, WANG X, WEN W, et al.Promotion effect of biosurfactant on heavy-oil biodegradation[J].Petroleum Science & Technology,2017,35(16):1692-1698 10.1080/10916466.2017.1356854 |
[21] | 邓振伟, 于萍, 陈玲.SPSS软件在正交实验设计、结果分析中的应用[J]. 智能计算机与应用,2009,10(5):15-17 |
[22] | 刘瑞江, 张业旺, 闻崇炜, 等.正交实验设计和分析方法研究[J]. 实验技术与管理,2010,27(9):52-55 |
[23] | 蒋万浪.Box-Behnken设计优化熟三七皂苷类成分提取工艺[J]. 中药材,2016,39(8):1824-1828 |
[24] | 林媛媛, 刘静, 王冬梅, 等.Box-Behnken实验设计法优化宝泻灵凝胶膏剂处方及其体外透皮特性研究[J]. 中草药,2014,45(9):1238-1244 |
[25] | 李跃辉, 王银, 彭宇, 等.正交设计结合Box-Behnekn效应面法优选银桑菊固体饮料提取工艺[J]. 国际药学研究杂志,2016,43(4):761-767 |
[26] | 国家能源局, 国家发展与改革委员会.岩石中可溶有机物及原油族组分分析: SY/T 5119-2008[S]. 北京: 石油工业出版社,2008 |
[27] | 詹亚斌, 张桥, 陈凯伦, 等.石油降解菌群的筛选、构建及其降解特性研究[J]. 环境污染与防治,2017,39(8):860-864 |
[28] | 王鑫, 郭书海, 孙铁珩, 等.稠油高效降解菌的降解特性及其应用[J]. 环境工程学报,2009, 3(4):586-590 |
[29] | ZHANG X, XU D, ZHU C, et al.Isolation and identification of biosurfactant producing and crude oil degrading Pseudomonas aeruginosa strains[J].Chemical Engineering Journal,2012,209(41):138-146 10.1016/j.cej.2012.07.110 |
[30] | 于彩虹, 赵粉红, 吴东奎, 等.一株假单胞菌(Pseudomonas)SYBS01降解石油的特性[J].环境工程学报,2016, 10(10):6042-6048 12030/j.cjee.201504252 |
[31] | 张宝.解淀粉芽孢杆菌抗菌脂肽bacillomycin L的纯化鉴定及抑菌机理研究[D].北京:中国农业大学,2014 |
[32] | 包建平, 朱翠山, 马安来, 等.生物降解原油中生物标志物组成的定量研究[J]. 江汉石油学院学报, 2002,24(2):22-26 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:555
HTML全文浏览数:411
PDF下载数:105
施引文献:0
出版历程
刊出日期:2018-11-29
-->
脂肽生物表面活性剂作用下多菌种石油生物降解影响因素优化
文炜涛1,,王新伟2,3,
蔡婷1,
邹洪媛2,3,
杨永森1,
艾佳臻2,3,
肖萌4
1.中国石油大学北京地球科学学院,北京 102249
2.中国石油大学北京化学工程与环境学院,北京 102249
3.北京市油气污染与防治实验室,北京 102249
4.中国地质大学北京水资源与环境学院,北京 100083
基金项目: 国家自然科学基金资助项目(41403067)
关键词: 脂肽生物表面活性剂/
多菌种降解/
降解条件优化
摘要:探索多种菌种降解石油过程中菌种和脂肽生物表面活性剂的作用,筛选石油降解的主要影响因素及最佳组合,并为石油污染物的降解机理研究和石油污染修复提供指导。基于正交实验筛选主要影响因素,采用Box-Behnken实验探讨各因素最佳水平。正交实验中脂肽生物表面活性剂是多菌种降解石油过程中最主要的影响因素,在Box-Behnken实验中,其能显著地影响石油降解率。菌种降解能力是石油饱和烃组分生物降解的最主要影响因素,但脂肽生物表面活性剂是芳烃、胶质和沥青质组分降解的最主要的影响因素。研究所用菌种中,解淀粉芽孢杆菌(Bacillus amyloliquefaciens)和假单胞菌(Pseudomonas aeruginosa)在石油降解过程最重要,是本实验的石油降解最优菌。菌种和脂肽生物表面活性剂的添加浓度配比对于石油降解具有重要的影响。解淀粉芽孢杆菌和假单胞菌添加量5%,脂肽生物表面活性剂粗品添加量200 mg·L-1的降解效果最优,理论上,最高降解率可达63.78%,验证降解率达到了53.89%,相对于多菌种正交实验最高降解率提高了5.54%。利用正交实验和Box-Behnken实验筛选最优降解菌和最优菌种组合的方法,具有分析因素多、实验量少等优点,具有较好的应用前景。
English Abstract
Factors optimization for multi-strain biodegradation of petroleum under the effect of surfactin
WEN Weitao1,,WANG Xinwei2,3,
CAI Ting1,
ZOU Hongyuan2,3,
YANG Yongsen1,
AI Jiazhen2,3,
XIAO Meng4
1.College of Geosciences, China University of Petroleum Beijing, Beijing 102249, China
2.College of Chemical Engineering and Enviroment, China University of Petroleum Beijing, Beijing 102249, China
3.Beijing Key Laboratory of Oil and Gas Pollution Control, Beijing 102249, China
4.School of Water Resource and Environment, China University of GeosciencesBeijing, Beijing 100083, China
Keywords: surfactin/
multi-strain degradation/
degradation condition optimization
Abstract:The study on the effects of strains and surfactin on the multi-strain biodegradation of petroleum could screen the main factors and their best combination, then provide guidelines for determining the petroleum biodegradation mechanisms and remediation of petroleum contaminated media. In this study, based on orthogonal test, surfactin was screened as the main influence factor on the multi-strain degradation of oil. Box-Behnken test was used to explore the optimal level of each factor, and found that surfactin could significantly significantly affect the oil degradation rate. The bacteria species was the main factor affecting the biodegradation of saturated hydrocarbons. However, the biodegradation of aromatic hydrocarbons, resins and asphaltenes was dependent on surfactin. Among 10 species of bacteria, Bacillus amyloliquefaciens and Pseudomonas aeruginosa showed the important performance on oil degradation, and were the best oil degradation bacteria. In addition, the concentration ratio of bacteria and surfactin had an important effect on oil degradation. The optimum oil degradation were achieved at 5% inoculation of Bacillus amyloliquefaciens and Pseudomonas aeruginos, and surfactin dosage of 200 mg·L-1, and the theoretical prediction maximum oil degredation rate could reach 63.78%. The corresponding rate verified by the experiment was 53.89%, which was 5.54% higher than the highest degradation rate based on orthogonal experiments. Therefore, the orthogonal and Box-Behnken experiments could screen and combine the optimum oil-degrading bacteria, which have some advantages of analyzing many factors and conduct a few of experiments, and have a good application prospect.