黄华存1,
董文华1,
安学文1
1.广西大学资源环境与材料学院,南宁 530004
基金项目: 广西大学基金项目博士启动项目(XBZ170344)
Influence of F-doping modification and preparation method optimization of V2O5-WO3/TiO2 catalyst on its NO reduction at low temperature
CUI Jing1,,HUANG Huacun1,
DONG Wenhua1,
AN Xuewen1
1.School of Resource, Environment and Materials, Guangxi University, Nanning 530004, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为提高SCR脱硝催化剂的低温脱硝性能,采用正交实验的方法制备了一系列氟(F)掺杂V2O5-WO3/TiO2催化剂,并对其进行活性分析,考察了不同氟元素来源(氟钛酸铵、氟化铵)、不同钒元素(V)前驱体(乙酰丙酮氧钒、偏钒酸铵)、钨元素(W)的不同添加方式(W做助剂、W既做载体又充当助剂)、不同载体制备方式(溶胶凝胶法、浸渍法)对催化剂脱硝性能的影响。结果表明,F掺杂改性显著增强了催化剂在200~350 ℃温度范围内的脱硝性能,其中以乙酰丙酮氧钒为V前驱体,以氟化铵为F源,W既充当载体又做助剂的方式制备出的F掺杂V2O5-WO3/TiO2催化剂具有最优的脱硝效果,其在空速为10 000 h-1的情况下,在200~350 ℃的温度反应区间,活性能稳定维持在98%以上。同时采用XPS、BET、TGA、SEM、XRD、Raman一系列表征手段对催化剂的理化性质进行了分析,表征结果表明F元素掺杂提高了活性组分在载体表面的分散度,同时促使了催化剂表面的电荷发生转移,增强了催化剂表面的氧化还原能力,促进了催化剂表面化学吸附氧的生成,增加了还原态V物种与还原态W物种的数量。
关键词: 选择性催化还原(SCR)/
F掺杂改性/
V2O5-WO3/TiO2催化剂/
低温SCR脱硝
Abstract:To improve the denitration performance of the SCR catalyst at low temperature, a series of F doped V2O5-WO3 / TiO2 catalysts were prepared by orthogonal test and their catalytic activity for denitration were analyzed. The effects of vanadium precursors, flourine sources, tungsten addition ways and carrier preparation methods on the denitration performance of the catalysts were studied. The results indicated that the F-doping modification method could greatly enhanced the denitration performance of the catalyst at the temperature ranging from 200 ℃ to 350 ℃. When the F doped V2O5-WO3 / TiO2 catalyst was prepared by using vanadium acetylacetone as V precursor , ammonium fluoride as F source and W as carrier, it presented the best denitration performance, its denitration rate was higher than 98% at the 10 000 h-1 space velocity and the reactive temperature range from 200 ℃ to 350 ℃. Meanwhile, the identification by XPS, BET, TGA, SEM, XRD, Raman test showed that F doping improved the dispersion of the active component on the surface of the carrier, promoted the charge transfer on the surface of the catalyst, and strengthened the REDOX capacity on the surface of the catalyst. Then the formation chemisorbed oxygen on the catalyst surface was faciliated, and the reductive species of V/W increased accordingly.
Key words:selective catalytic reduction (SCR)/
F-doping modification/
V2O5-WO3/TiO2 catalyst/
SCR at low temperature.
[1] | 蔺卓玮, 陆强, 唐昊,等. 平板式V2O5-MoO3/TiO2型SCR催化剂的中低温脱硝和抗中毒性能研究[J]. 燃料化学学报, 2017, 45(1):113-122 |
[2] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.工业锅炉经济运行标准: GB/T 17954-2007[S]. 北京: 中国标准出版社, 2008 |
[3] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.火电厂大气污染物排放标准: GB 13223-2011[S]. 北京: 中国环境科学出版社,2012 |
[4] | JOSHI S Y, KUMAR A, LUO J, et al.Combined experimental and kinetic modeling study of the Bi-modal NOx conversion profile on commercial Cu-SAPO-34 catalyst under standard SCR conditions [J].Applied Catalysis B:Environmental, 2015,165: 27-35 10.1016/j.apcatb.2014.09.060 |
[5] | ZONG L, DONG F, ZHANG G, et al.Highly efficient mesoporous V2O5/WO3-TiO2 catalyst for selective catalytic reduction of NOx: Effect of the valence of V on the catalytic performance[J].Catalysis Surveys from Asia, 2017, 21(3):103-113 10.1007/s10563-017-9229-y |
[6] | ZHANG S, ZHONG Q, ZHAO W, et al.Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature[J].Chemical Engineering Journal, 2014, 253:207-216 10.1016/j.cej.2014.04.045 |
[7] | 杨瀚, 仲兆平, 朱林,等. 铁铈复合催化剂的低温SCR脱硝性能[J]. 环境工程学报, 2017, 11(4):2413-2418 10.12030/j.cjee.201602108 |
[8] | 朱少文, 沈伯雄, 池桂龙,等. 铁钴共掺杂的Mn-Ce/TiO2催化剂低温SCR脱硝[J]. 环境工程学报, 2017, 11(6):3633-3639 10.12030/j.cjee.201609229 |
[9] | MENG D, ZHAN W, GUO Y, et al.A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: Effect of the calcination temperature[J].Journal of Molecular Catalysis A:Chemical, 2016, 420:272-281 10.1016/j.molcata.2016.04.028 |
[10] | YAO X J, MA K L, ZOU W X, et al.Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature[J].Chinese Journal of Catalysis, 2017, 38(1):146-159 10.1016/S1872-2067(16)62572-X |
[11] | JIANG L J, LIU Q C, ZHAO Q, et al.Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnOx supported by nitric acid-modified activated carbon[J].Research on Chemical Intermediates, 2018, 44(3):1729-1744 10.1007/s11164-017-3194-y |
[12] | JIANG H, SONG H, ZHOU Z, et al.The roles of Li+ and F? ions in Li–F-codoped TiO2 system[J].Journal of Physics & Chemistry of Solids, 2007, 68(10):1830-1835 10.1016/j.jpcs.2007.01.027 |
[13] | YU J G, YU J C, CHENG B, et al.The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO2 powders[J].Journal of Solid State Chemistry, 2003, 174(2):372-380 10.1016/S0022-4596(03)00250-0 |
[14] | 赵炜. 氟、硫掺杂V2O5/TiO2脱硝催化剂的制备及性能研究[D]. 南京:南京理工大学, 2014 |
[15] | 黄燕, 孟庆华, 金迁,等. 制备方法对V2O5-WO3/TiO2选择性催化还原催化剂性能的影响[J]. 工业催化, 2015(4):301-306 |
[16] | 刘建华, 杨晓博, 张琛,等.Fe2O3对V2O5-WO3/TiO2催化剂表面性质及其性能的影响[J]. 化工学报, 2016, 67(4):1287-1293 |
[17] | 高凤雨.Mn基低温NH3-SCR催化剂的抗水抗硫性能及反应机理研究[D]. 北京:北京科技大学, 2017 |
[18] | LI J, TANG X, GAO F, et al.Studies on the calcium poisoning and regeneration of commercial De-NOx SCR catalyst[J].Chemical Papers, 2017, 71(10):1-8 10.1007/s11696-017-0186-8 |
[19] | LI P, XIN Y, LI Q, et al.Ce-Ti amorphous oxides for selective catalytic reduction of NO with NH3: Confirmation of Ce-O-Ti active sites[J].Environmental Science & Technology, 2012, 46(17):9600-9605 10.1021/es301661r |
[20] | TRONCONI E, NOVA I, CIARDELLI C, et al.Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J].Journal of Catalysis, 2007, 245(1):1-10 10.1016/j.jcat.2006.09.012 |
[21] | BENJARAM M R, PAVANI M S,REDDY E P, et al.Surface characterization of La2O3?TiO2 and V2O5/La2O3?TiO2 catalysts[J].Journal of Physical Chemistry B,2001, 105(26):5695-5700 10.1021/jp014487p |
[22] | 武文粉, 包炜军, 李会泉,等.V2O5-WO3/TiO2烟气脱硝催化剂失活前后元素的赋存特征[J]. 过程工程学报, 2016, 16(5):794-801 |
[23] | CHENG P, DENG C, DAI X, et al.Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells[J].Journal of Photochemistry & Photobiology A:Chemistry, 2008, 195(1):144-150 10.1016/j.jphotochem.2007.09.016 |
[24] | TAKEUCHI U, CHIKAMATSU A, HITOSUGI T, et al.Transport properties and electronic states of anatase Ti1-xWxO2 epitaxial thin films[J].Journal of Applied Physics, 2010, 107(2):15 10.1063/1.3277057 |
[25] | WANG X, CHEN H Y, SACHTLER W M H.Mechanism of the selective reduction of NOx over Co/MFI: comparison with Fe/MFI[J].Journal of Catalysis, 2001, 197(2):281-291 10.1006/jcat.2000.3097 |
[26] | LI Y, ZHONG Q.The characterization and activity of F-doped vanadia/titania for the selective catalytic reduction of NO with NH3 at low temperatures[J].Journal of Hazardous Materials, 2009, 172(2):635-640 10.1016/j.jhazmat.2009.07.039 |
[27] | 甘丽娜. 低温V2O5-WO3/TiO2脱硝催化剂开发与应用研究[D]. 北京:中国科学院研究生院, 2016 |
[28] | 江宏富, 周作兴, 刘杏芹,等.F离子掺杂TiO2的性能研究[J]. 影像科学与光化学, 2007, 25(3):223-229 |
[29] | AND H P, CHOI W.Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors[J].Journal of Physical Chemistry B,2004, 108(13):4086-4093 10.1021/jp036735i |
[30] | LI F X, XIE J L, FANG D, et al.Mechanistic study of Ce-modified MnOx/TiO2 catalysts with high NH3-SCR performance and SO2 resistance at low temperatures[J].Researchon Chemical Intermediates, 2017, 43(10):5413-5432 10.1007/s11164-017-2937-0 |
[31] | YANG W, LIU Y X, WANG Q ,et al.Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation[J].Chemical Engineering Journal,2017, 326: 169-181 10.1016/j.cej.2017.05.106 |
[32] | ZHANG W F, HE Y L, ZHANG M S, et al.Raman scattering study on anatase TiO2 nanocrystals[J].Journal of Physics D: Applied Physics, 2000, 33(8): 912 10.1088/0022-3727/33/8/305 |
[33] | 张舒乐.V2O5-WO3/TiO2及其F掺杂催化剂的制备、脱硝特性与应用研究[D].南京:南京理工大学, 2013 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:947
HTML全文浏览数:827
PDF下载数:109
施引文献:0
出版历程
刊出日期:2018-11-12
-->
F掺杂改性及其制备方法优化对V2O5-WO3/TiO2催化剂低温SCR脱硝性能的影响
崔晶1,,黄华存1,
董文华1,
安学文1
1.广西大学资源环境与材料学院,南宁 530004
基金项目: 广西大学基金项目博士启动项目(XBZ170344)
关键词: 选择性催化还原(SCR)/
F掺杂改性/
V2O5-WO3/TiO2催化剂/
低温SCR脱硝
摘要:为提高SCR脱硝催化剂的低温脱硝性能,采用正交实验的方法制备了一系列氟(F)掺杂V2O5-WO3/TiO2催化剂,并对其进行活性分析,考察了不同氟元素来源(氟钛酸铵、氟化铵)、不同钒元素(V)前驱体(乙酰丙酮氧钒、偏钒酸铵)、钨元素(W)的不同添加方式(W做助剂、W既做载体又充当助剂)、不同载体制备方式(溶胶凝胶法、浸渍法)对催化剂脱硝性能的影响。结果表明,F掺杂改性显著增强了催化剂在200~350 ℃温度范围内的脱硝性能,其中以乙酰丙酮氧钒为V前驱体,以氟化铵为F源,W既充当载体又做助剂的方式制备出的F掺杂V2O5-WO3/TiO2催化剂具有最优的脱硝效果,其在空速为10 000 h-1的情况下,在200~350 ℃的温度反应区间,活性能稳定维持在98%以上。同时采用XPS、BET、TGA、SEM、XRD、Raman一系列表征手段对催化剂的理化性质进行了分析,表征结果表明F元素掺杂提高了活性组分在载体表面的分散度,同时促使了催化剂表面的电荷发生转移,增强了催化剂表面的氧化还原能力,促进了催化剂表面化学吸附氧的生成,增加了还原态V物种与还原态W物种的数量。
English Abstract
Influence of F-doping modification and preparation method optimization of V2O5-WO3/TiO2 catalyst on its NO reduction at low temperature
CUI Jing1,,HUANG Huacun1,
DONG Wenhua1,
AN Xuewen1
1.School of Resource, Environment and Materials, Guangxi University, Nanning 530004, China
Keywords: selective catalytic reduction (SCR)/
F-doping modification/
V2O5-WO3/TiO2 catalyst/
SCR at low temperature
Abstract:To improve the denitration performance of the SCR catalyst at low temperature, a series of F doped V2O5-WO3 / TiO2 catalysts were prepared by orthogonal test and their catalytic activity for denitration were analyzed. The effects of vanadium precursors, flourine sources, tungsten addition ways and carrier preparation methods on the denitration performance of the catalysts were studied. The results indicated that the F-doping modification method could greatly enhanced the denitration performance of the catalyst at the temperature ranging from 200 ℃ to 350 ℃. When the F doped V2O5-WO3 / TiO2 catalyst was prepared by using vanadium acetylacetone as V precursor , ammonium fluoride as F source and W as carrier, it presented the best denitration performance, its denitration rate was higher than 98% at the 10 000 h-1 space velocity and the reactive temperature range from 200 ℃ to 350 ℃. Meanwhile, the identification by XPS, BET, TGA, SEM, XRD, Raman test showed that F doping improved the dispersion of the active component on the surface of the carrier, promoted the charge transfer on the surface of the catalyst, and strengthened the REDOX capacity on the surface of the catalyst. Then the formation chemisorbed oxygen on the catalyst surface was faciliated, and the reductive species of V/W increased accordingly.