删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

SO2对Zr掺杂Mn-Ce/GR催化剂低温脱硝性能的影响

本站小编 Free考研考试/2021-12-31

李舒健1,,
尤晓晨1,
盛重义1,2,
肖香2,
俞丹青3,
周鹏飞1,
杨柳1
1.南京师范大学环境学院,南京 210023
2.浙江大学苏州工业技术研究院,苏州 215163
3.武汉科技大学化学与化工学院,武汉 430081
基金项目: 国家自然科学基金资助项目(51508281,41771498)
江苏省高校自然科学研究项目(16KJD610001)




Effect of SO2 on de-NOx performance of Zr doping Mn-Ce/GR catalyst at low temperature

LI Shujian1,,
YOU Xiaochen1,
SHENG Zhongyi1,2,
XIAO Xiang2,
YU Danqing3,
ZHOU Pengfei1,
YANG Liu1
1.School of Environment, Nanjing Normal University, Nanjing 210023, China
2.Suzhou Industrial Technology Research Institute of Zhejiang University, Suzhou 215163, China
3.School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

-->

摘要
HTML全文
(0)(0)
参考文献(59)
相关文章
施引文献
资源附件(0)
访问统计

摘要:通过水热法分别制备掺杂Zr、Sb、Sn和Si的Mn-Ce/石墨烯(Mn-Ce/GR)催化剂,考察了其在低温氨气选择性催化还原(NH3-SCR)过程中对NOx的去除效率和抗SO2中毒性能。结果显示,掺杂Zr后,催化剂具有良好的低温脱硝活性,在120 ℃时,其NOx转化率和N2选择性分别达到97.26%和98.97%,且当进气中SO2的体积分数为200×10-6时,其抗硫性明显优于掺杂其他3种元素的催化剂,原因是硫酸盐在掺杂Zr催化剂表面的沉积速率有所减缓。通过Raman、XRD、HRTEM、SEM、BET、XPS、FT-IR、H2-TPR以及NH3-TPD等表征手段对掺杂Zr的Mn-Ce/GR新鲜催化剂和失活样品进行表征分析。发现,SO2对掺杂Zr催化剂的毒化作用主要有4个方面:Oα大量减少,还原能力减弱;活性组分CeO2含量减少,储氧能力减弱;催化剂表面Zr含量减少,酸性位点减少;硫酸盐和硝酸盐在催化剂表面大量沉积,减少了催化剂的比表面积。
关键词: 锆掺杂/
锰铈石墨烯复合型催化剂/
低温氮气选择性催化还原/
二氧化硫

Abstract:Zr, Sb, Sn and Si were used to modify the Mn-Ce/graphene(Mn-Ce/GR) catalyst, respectively. SO2 resistance of these catalysts prepared by hydrothermal method for low-temperature selective catalytic reduction(SCR) of NOx with NH3 was investigated in this study. The results indicated that Zr doping Mn-Ce/GR catalyst showed superior activity. NOx conversion and N2 selectivity were 97.26% and 98.97%, respectively at 120 °C. And it had higher SO2 resistance than the others when SO2 with a volume fraction of 200×10-6 was fed in. One possible reason was that the deposition rate of sulfates reduced. The fresh and deactivated Zr doping Mn-Ce/GR catalysts were characterized by Raman spectroscopy, XRD, HRTEM, SEM, BET, XPS, FT-IR, H2-TPR and NH3-TPD. The characterized results indicated that the deactivation of Zr doping catalysts was mainly caused by the four reasons. Firstly, the decrease of Oα concentration on the surface weakened the reduction ability. Secondly, the decrease of CeO2 content led the reduction of oxygen storage capacity. Thirdly, with the decrease of Zr content on catalysts surface, the acid sites were reduced. Finally, the deposion of sulfates and nitrates decreasedthe specific surface area of the catalysts.
Key words:Zr-doping/
Mn-Ce/GR catalyst/
low-temperature NH3-SCR/
SO2.

加载中
[1] 刘亭. 锰铈基低温选择性催化还原(SCR)脱硝催化剂的研究[D]. 天津:南开大学,2011
[2] 余艳, 袁博, 周松.NH3-SCR钒系催化剂的制备及脱硝性能研究[J]. 车用发动机,2015,38(3):37-40
[3] 刘福东, 单文坡, 石晓燕, 等. 用于NH3选择性催化还原NO的非钒基催化剂研究进展[J]. 催化学报,2011,32(7):1113-1128
[4] 喻成龙, 黄碧纯,杨颖欣. 分子筛应用于低温 NH3-SCR 脱硝催化剂的研究进展[J]. 华南理工大学学报(自然科学版),2015,59(3):143-151
[5] 李晨露, 唐晓龙, 易红宏, 等.Mn基低温SCR催化剂的抗H2O、抗SO2研究进展[J]. 化工进展,2017,36(3):934-943
[6] KAPTEIJN F, SINGOREDJO L, ANDREINI A, et al.Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J].Applied Catalysis B:Environmental,1994, 3(3): 173-189 10.1016/0926-3373(93)E0034-9
[7] 孙亮, 许悠佳, 曹青青, 等. 氧化锰基催化剂低温NH3选择性还原NOx反应及其机理[J]. 化学进展,2010, 22(10):1882-1891
[8] QI G, YANG R T, CHANG R, et al.MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J].Applied Catalysis B:Environmental,2004,51(2): 93-106 10.1016/j.apcatb.2004.01.023
[9] QI G, YANG R T.Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J].Journal of Catalysis,2003,217(2):434-441 10.1016/S0021-9517(03)00081-2
[10] QI G, YANG R T.Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J].Journal of Physical Chemistry B,2004,108(40):15738-15747 10.1021/jp048431h
[11] XIAO X, SHENG Z Y, YANG L, et al.Low-temperature selective catalytic reduction of NOx with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method[J].Catalysis Science & Technology,2016,6(5):1507-1514 10.1039/C5CY01228G
[12] SHEN B X, WANG Y Y, WANG F M, et al.The effect of Ce-Zr on NH3-SCR activity over MnOx (0.6)/Ce0.5Zr0.5O2 at low temperature[J].Chemical Engineering Journal,2014,236:171-180 10.1016/j.cej.2013.09.085
[13] LI W, GUO R T, WANG S X, et al.The enhanced performance of a CeSiOx support on a Mn/CeSiOx catalyst for selective catalytic reduction of NOx with NH3[J].RSC Advances,2016,6(86):82707-82715 10.1039/C6RA18821D
[14] HUANG B J, YU D Q, SHENG Z Y, et al.Novel CeO2@TiO2 core-shell nanostructure catalyst for selective catalytic reduction of NOx with NH3[J].Journal of Environmental Sciences,2017,29(5):129-136 10.1016/j.jes.2016.05.038
[15] GAO G, SHI J W, LIU C, et al.Mn/CeO2 catalysts for SCR of NOx with NH3:Comparative study on the effect of supports on low-temperature catalytic activity[J].Applied Surface Science,2017,411:338-346 10.1016/j.apsusc.2017.03.164
[16] 杨超, 刘小青, 黄碧纯, 等.Zr改性MnOx/MWCNTs催化剂的结构特征与低温SCR活性[J]. 物理化学学报,2014,30(10):1895-1902 10.3866/PKU.WHXB201407162
[17] 孙传智.Sm、Zr共掺杂对MnOx-TiO2催化剂N2选择性及抗水抗硫性能作用研究[C]//中国稀土学会.中国稀土学会2017学术年会摘要集,2017
[18] ZHU Z P, LIU Z Y, NIU H X, et al.Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J].Journal of Catalysis,2001,197(1):6-16 10.1006/jcat.2000.3052
[19] 陶建忠,李国祥,佟德辉.H2O和SO2在NH3选择性催化还原NOx过程中的影响[J].内燃机工程,2008,29(3):56-58
[20] ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, et al.Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J].Applied Catalysis B:Environmental,2007,76(1):123-134 10.1016/j.apcatb.2007.05.010
[21] SU Y X, FAN B X, WANG L S, et al.MnOx supported on carbon nanotubes by different methods for the SCR of NO with NH3[J].Catalysis Today,2013,201:115-121 10.1016/j.cattod.2012.04.063
[22] SUN Z P, HASAN T, TORRISI F, et al.Graphene mode-locked ultrafast laser[J].ACS Nano,2010,4(2):803-810 10.1021/nn901703e
[23] 焦金珍, 李时卉, 黄碧纯. 石墨烯负载MnOx催化剂的制备及其低温NH3-SCR活性[J]. 物理化学学报,2015,31(7):1383-1390 10.3866/PKU.WHXB201504292
[24] 张晓鹏. 基于Mn/Ce-ZrO2催化剂的低温NH3-SCR脱硝性能研究[D]. 天津:南开大学. 2013
[25] 张晓鹏, 沈伯雄.Mn/Ce-ZrO2催化剂低温NH3-SCR脱硝性能研究[J]. 燃料化学学报, 2013,41(1):123-128
[26] 张呈祥.Mn-Ce/Al2O3低温SCR脱硝催化剂抗SO2中毒性能研究[D]. 大连:大连理工大学. 2015
[27] 束航.SCR烟气脱硝过程中硫酸(氢)铵细颗粒生成及分解特性研究[D]. 南京:东南大学. 2015
[28] 闫东杰, 玉亚, 黄学敏, 等.SO2对Mn-Ce/TiO2低温SCR催化剂的毒化作用研究[J]. 燃料化学学报,2016,44(2):232-238
[29] 何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附,2004,20(4):376-384
[30] SHENG Z Y, HU Y F, XUE J M, et al.SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst for low temperature NOx reduction with NH3[J].Journal of Rare Earths,2012,30(7):676-682 10.1016/S1002-0721(12)60111-2
[31] JARRIGE J, VERVISCH P.Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst[J].Applied Catalysis B: Environmental,2009,90(1):74-82 10.1016/j.apcatb.2009.02.015
[32] YE Q, ZHAO J S, HUO F F, et al.Nanosized Ag/α-MnO2 catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene[J].Catalysis Today,2011,175(1):603-609 10.1016/j.cattod.2011.04.008
[33] GU T T, LIU Y, WENG X L, et al.The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3[J].Catalysis Communications,2010,12(4):310-313 10.1016/j.catcom.2010.10.003
[34] XU W Q, HE H, YU Y B, et al.Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J].Journal of Physical Chemistry C,2009,113(11):4426-4432 10.1021/jp8088148
[35] ROMANO E, SCHULZ K H.A XPS investigation of SO2 adsorption on ceria-zirconia mixed-metal oxides[J].Applied Surface Science,2005,246(1):262-270 10.1016/j.apsusc.2004.11.017
[36] SU W, LU X N, JIA S H, et al.Catalytic reduction of NOx over TiO2-graphene oxide supported with MnOx at low temperature[J].Catalysis Letters,2015,145(7):1446-1456 10.1007/s10562-015-1550-3
[37] 冯云桑.Co-Ce氧化物对Mn/TiO2系低温脱硝催化剂结构与性能的影响[D].镇江:江苏科技大学. 2013
[38] WANG L S, HUANG B C, SU Y X, et al.Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization[J].Chemical Engineering Journal,2012,192:232-241 10.1016/j.cej.2012.04.012
[39] 龙恩艳, 王云, 张晓玉, 等.Zr基载体负载Pd催化剂用于贫燃天然气汽车尾气净化[J]. 催化学报, 2010,31(3):313-316
[40] SHEN B X, MA H Q, HE C, et al.Low temperature NH3-SCR over Zr and Ce pillared clay based catalysts[J].Fuel Processing Technology,2014, 119:121-129 10.1016/j.fuproc.2013.10.026
[41] SHEN B X, ZHANG X P, MA H Q, et al.A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O[J].Journal of Environmental Sciences,2013,25(4):791-800 10.1016/S1001-0742(12)60109-0
[42] DONG F, ZHAO W R, WU Z B, et al.Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition[J].Journal of Hazardous Materials, 2009,162(2):763-770 10.1016/j.jhazmat.2008.05.099
[43] 胡宇峰, 薛建明, 王小明, 等.Mn-Ce/TiO2低温选择性催化还原催化剂二氧化硫中毒及再生特性[J]. 工业催化,2013,22(4):27-33 10.3969/j.issn.1008-1143.2013.04.006
[44] BUCIUMAN F, PATCAS F, CRACIUN R, et al.Vibrational spectroscopy of bulk and supported manganese oxides[J].Physical Chemistry Chemical Physics,1999,1(1):185-190 10.1039/A807821A
[45] 艳莉, 李晓晓, 詹亮, 等. 金属助剂对蜂窝状MnOx-CeO2/ACH催化剂低温脱硝行为的影响[J]. 燃料化学学报,2014,59(11):1365-1371
[46] 马建蓉, 黄张根, 刘振宇, 等. 再生方法对V2O5/AC催化剂同时脱硫脱硝活性的影响[J]. 催化学报, 2005,26(6):463-469
[47] ZHANG J B, ZHONG Z P, SHEN D K, et al.Preparation of bamboo-based activated carbon and its application in direct carbon fuel cells[J].Energy & Fuels,2011,25(5):2187-2193 10.1021/ef200161c
[48] 付孟帆.Mn-Ce-CuOx/ACF低温选择催化还原NO的实验研究[D]. 长沙:湖南大学. 2014
[49] SHEN B X, LIU T.Deactivation of MnOx-CeOx/ACF catalysts for low-temperature NH3-SCR in the presence of SO2[J].Acta Physico-Chimica Sinica,2010,26(11):3009-3016 10.3866/PKU.WHXB20101120
[50] HOU Y Q, HUANG Z G, GUO S J, et al.Effect of SO2 on V2O5/ACF catalysts for NO reduction with NH3 at low temperature[J].Catalysis Communications,2009,10(11):1538-1541 10.1016/j.catcom.2009.04.003
[51] ZHANG X P, SHEN B X, WANG K, et al.A contrastive study of the introduction of cobalt as a modifier for active components and supports of catalysts for NH3-SCR[J].Journal of Industrial and Engineering Chemistry, 2013,19(4):1272-1279 10.1016/j.jiec.2012.12.028
[52] YANG S J, GUO Y F, CHANG H Z, et al.Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance[J].Applied Catalysis B:Environmental,2013,136:19-28 10.1016/j.apcatb.2013.01.028
[53] SUN M J, ZOU G J, XU S, et al.Nonaqueous synthesis, characterization and catalytic activity of ceria nanorods[J].Materials Chemistry and Physics,2012,134(2):912-920 10.1016/j.matchemphys. 2012.03.089
[54] PICASSO G, GUTIERREZ M, PINA M P, et al.Preparation and characterization of Ce-Zr and Ce-Mn based oxides for n-hexane combustion: Application to catalytic membrane reactors[J].Chemical Engineering Journal,2007,126(2):119-130 10.1016/j.cej.2006.09.005
[55] AGUILERA D A, PEREZ A, MOLINA R, et al.Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs[J].Applied Catalysis B:Environmental,2011,104(1):144-150 10.1016/j.apcatb.2011.02.019
[56] LIU F D, HE H.Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study[J].Catalysis Today,2010,153(3): 70-76 10.1016/j.cattod.2010.02.043
[57] SULTANA A, SASAKI M, HAMADA H, et al.Influence of support on the activity of Mn supported catalysts for SCR of NO with ammonia[J].Catalysis Today,2012,185(1):284-289 10.1016/j.cattod.2011.09.018
[58] PENG Y, LIU Z, NIU X W, et al.Manganese doped CeO2-WO3 catalysts for the selective catalytic reduction of NOx with NH3: An experimental and theoretical study[J].Catalysis Communications,2012,19:127-131 10.1016/j.catcom.2011.12.034
[59] CHANG H Z, LI J H, CHEN X Y, et al.Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: Enhancement of activity and remarkable resistance to SO2[J].Catalysis Communications,2012,27:54-57 10.1016/j.catcom.2012.06.022



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1151
HTML全文浏览数:826
PDF下载数:149
施引文献:0
出版历程

刊出日期:2018-08-17




-->








SO2对Zr掺杂Mn-Ce/GR催化剂低温脱硝性能的影响

李舒健1,,
尤晓晨1,
盛重义1,2,
肖香2,
俞丹青3,
周鹏飞1,
杨柳1
1.南京师范大学环境学院,南京 210023
2.浙江大学苏州工业技术研究院,苏州 215163
3.武汉科技大学化学与化工学院,武汉 430081
基金项目: 国家自然科学基金资助项目(51508281,41771498) 江苏省高校自然科学研究项目(16KJD610001)
关键词: 锆掺杂/
锰铈石墨烯复合型催化剂/
低温氮气选择性催化还原/
二氧化硫
摘要:通过水热法分别制备掺杂Zr、Sb、Sn和Si的Mn-Ce/石墨烯(Mn-Ce/GR)催化剂,考察了其在低温氨气选择性催化还原(NH3-SCR)过程中对NOx的去除效率和抗SO2中毒性能。结果显示,掺杂Zr后,催化剂具有良好的低温脱硝活性,在120 ℃时,其NOx转化率和N2选择性分别达到97.26%和98.97%,且当进气中SO2的体积分数为200×10-6时,其抗硫性明显优于掺杂其他3种元素的催化剂,原因是硫酸盐在掺杂Zr催化剂表面的沉积速率有所减缓。通过Raman、XRD、HRTEM、SEM、BET、XPS、FT-IR、H2-TPR以及NH3-TPD等表征手段对掺杂Zr的Mn-Ce/GR新鲜催化剂和失活样品进行表征分析。发现,SO2对掺杂Zr催化剂的毒化作用主要有4个方面:Oα大量减少,还原能力减弱;活性组分CeO2含量减少,储氧能力减弱;催化剂表面Zr含量减少,酸性位点减少;硫酸盐和硝酸盐在催化剂表面大量沉积,减少了催化剂的比表面积。

English Abstract






--> --> --> 参考文献 (59)
相关话题/化学 催化剂 分数 天津 化工学院