曹鹏1,
颜鑫2,
孔伟2
1.石河子大学化学化工学院,新疆兵团化工绿色过程重点实验室,石河子 832003
2.石河子天富南热电有限公司,石河子832000
基金项目: 国家高技术研究发展计划(863)项目(2015AA03A401)
Low temperature performance of honeycomb Mn-Ce/Al2O3 denitration catalyst in the pilot-scale
WANG Chengzhi1,,CAO Peng1,
YAN Xin2,
KONG Wei2
1.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
2.Shihezi Tianfu South Thermoelectric Co.Ltd., Shihezi 832000, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:采用自行设计的反应装置,研究中试规模条件下关键参数对蜂窝堇青石Mn-Ce/Al2O3催化剂脱硝效率的影响以及抗硫抗水性能,并通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)和比表面积测试仪(BET)研究催化剂的理化性质。结果表明,反应温度、空速、氨氮比对催化活性均有明显影响,同时,催化剂对氮氧化物浓度有较强适应性,NO浓度在134~469 mg·m-3区间内脱硝效率均可保持在75%以上。催化剂在100 oC,空速3 336 h-1,[NH3]/[NO]为0.9,烟气量20 m3·h-1条件下连续反应168 h,其催化效率可以稳定保持在75%~80%,说明蜂窝式Mn-Ce/Al2O3具有良好的稳定性。催化剂在含5%H2O气氛中催化效率由80%减少至60%,在去除H2O后抑制作用消失。反应气中通入143 mg·m-3 SO2后催化效率由80%降低至62%,停止通入SO2后活性不能恢复。同时通入143 mg·m-3 SO2和5%H2O,催化效率下降并维持在53%左右,停止通入后活性恢复至67%。通过对SO2中毒前后的催化剂表征分析可得,SO2存在条件下生成的硫酸铵盐堵塞了20 nm孔径以下的部分孔道,覆盖了催化剂表面活性位点,是引起效率下降的主要原因。
关键词: 选择性催化还原/
蜂窝体Mn-Ce/Al2O3/
中试/
催化/
低温脱硝
Abstract:A self-designed pilot scale reaction device was used to study the influence of key parameters on the denitration efficiency of honeycomb Mn-Ce/Al2O3 catalyst and the performance of SO2 and H2O resistance. Furthermore, the experiments of SEM, EDS, XRD, BET were carried out respectively in order to obtain physicochemical properties of the prepared catalysts. The result showed that reaction temperature, space velocity and mole ratio of NH3/NO have a significant impact on the catalysts’ performance. Meanwhile, the catalysts adapted well to the change of the concentration of NOx. The NOx conversion stayed above 75% in the range from 134 to 469 mg·m-3 of the NOx concentration. When the reaction temperature was 100 °C, space velocity was 3 336 h-1, NH3 to NOx ratio was 0.9 and the total flow rate was maintained at 20 m3·h-1, the catalytic efficiency can be steady at 75%~80% after 168 hours reaction. After introduction of 143 mg·m-3 SO2 into the reactants, NO conversion ratio decreased to 62% and activity cannot be completely recovered after SO2 is shut off. The NO conversion ratio of Mn-Ce/Al2O3 declined quickly to 60% when being introduced 5% H2O into the simulated gas. Then, the NO conversion ratio could raise quickly as soon as H2O was closed. After in the presence of 143 mg·m-3 SO2 and 5% H2O together, NO conversion was maintained at 53%. The activity of the deactivated catalyst could recover to 67% after removing H2O and SO2. It is mainly because the presence of SO2 result in formed ammonium sulfate on the catalyst surface which covers the active site and blocks the pore size of below 20 nm.
Key words:selective catalytic reduction/
Mn-Ce/Al2O3 honeycomb/
pilot-scale/
catalyst/
low-temperature.
[1] | 李晨露, 唐晓龙, 易红宏, 等.Mn基低温SCR催化剂的抗H2O、抗SO2研究进展[J]. 化工进展, 2017, 36(3):934-943 10.16085/j.issn.1000-6613.2017.03.022 |
[2] | ZHI B, DING H, WANG D, et al.Ordered mesoporous MnO2 as a synergetic adsorbent for effective arsenic(iii) removal[J].Journal of Material Chemistry A, 2014, 2(7):2374-2382 10.1039/C3TA13790B |
[3] | 陈焕章, 李宏, 李花, 等. 负载型Mn-Fe/γ-Al2O3低温脱硝催化剂的性能[J]. 化工进展, 2016, 35(4):1107-1112 10.16085/j.issn.1000-6613.2016.04.022 |
[4] | LI J H, CHEN J J, KE R, et al.Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx /TiO2 catalysts[J].Catalysis Communications, 2007, 8(12):1896-1900 10.1016/j.catcom.2007.03.007 |
[5] | HUANG J H, TONG Z Q, HUANG Y, et al.Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica[J].Applied Catalysis B Environmental, 2008, 78(3/4):309–314 10.1016/j.apcatb.2007.09.031 |
[6] | 耿春香, 柴倩倩, 王陈珑.Mn-Fe-Ce/TiO2低温脱硝催化剂的制备条件优化及其表征[J]. 化工进展, 2014, 33(4):921-924 10.3969/j.issn.1000-6613.2014.04.022 |
[7] | 郭学华, 李英霞, 陈健, 等. 蜂窝状整体式分子筛催化剂制备研究进展[J]. 环境科学与技术, 2014, 37(5):70-74 |
[8] | 李游. 整体式SCR蜂窝催化剂的制备工艺及性能评价[D]. 上海:华东理工大学,2013 |
[9] | 张倩, 黎俊, 杨成武, 等. 蜂窝状Mn-Ce/TiO2催化剂的脱硝催化性能[J]. 煤炭转化, 2016, 39(2):92-96 10.3969/j.issn.1004-4248.2016.02.017 |
[10] | 张先龙, 刘鹏, 蔡程, 等. 蜂窝状Ti0.14Mn0.86Ox/CH催化剂的制备及其低温NH3-SCR脱硝性能[J]. 环境化学, 2016, 35(10):2146-2155 10.7524/j.issn.0254-6108.2016.10.2016022101 |
[11] | CHIU C H, HSI H C, LIN H P.Multipollutant control of Hg/SO2 /NO from coal-combustion flue gases using transition metal oxide-impregnated SCR catalysts[J].Catalysis Today, 2015, 245:2-9 10.1016/j.cattod.2014.09.008 |
[12] | 高岩, 栾涛, 程凯, 等. 选择性催化还原蜂窝状催化剂工业试验研究[J]. 中国电机工程学报, 2011, 31(35):21-28 |
[13] | 刘树军.SO2和H2O对Mn-Ge/TiO2低温SCR催化剂的影响[D]. 西安:西安建筑科技大学,2015 |
[14] | TANG C J, ZHANG H L, DONG L.Ceria-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J].Catalysis Science & Technology, 2015, 6(5):1248-1264 10.1039/C5CY01487E |
[15] | SANG M L, PARK K H, HONG S C.MnOx/CeO2–TiO2 mixed oxide catalysts for the selective catalytic reduction of NO with NH3 at low temperature[J].Chemical Engineering Journal, 2012, 195-196:323–331 10.1016/j.cej.2012.05.009 |
[16] | 蒋文举. 烟气脱硫脱硝技术手册[M]. 北京:化学工业出版社, 2012:315-324 |
[17] | 闫志勇, 胡建飞, 徐鸿.SCR烟气脱硝催化剂V2O5-WO3/TiO2性能研究[J]. 中国计量学院学报, 2011, 22(1):68-72 10.3969/j.issn.1004-1540.2011.01.015 |
[18] | 廖永进, 陆继东, 黄秋雄, 等. 选择性催化还原服役后催化剂活性及动力学实验研究[J]. 中国电机工程学报, 2013, 33(17):37-44 |
[19] | SHAN W, LIU F D, HE H, et al.A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J].Applied Catalysis B: Environmental, 2012, 115-116(4):100-106 10.1016/j.apcatb.2011.12.019 |
[20] | SHENG Z Y, YU F, XUE J M, et al.SO2 poisoning and regeneration of Mn-Ce/TiO2 catalyst for low temperature NOx reduction with NH3[J].Journal of Rare Earth, 2012, 30(7):676-682 10.1016/S1002-0721(12)60111-2 |
[21] | GAN L, YANG J, MA D, et al.High-performance V2O5 -WO3 /TiO2 catalyst for diesel NOx reduction at low temperatures[J].Energy Procedia, 2014, 61:1115-1118 |
[22] | 曹蕃, 苏胜, 向军, 等.Mn-Ce-Zr/γ-Al2O3催化剂低温选择性催化还原脱硝性能分析[J]. 中国电机工程学报, 2015, 35(9):2238-2245 10.13334/j.0258-8013.pcsee.2015.09.018 |
[23] | XU W Q, HE H, YU Y B.Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J].Journal of Physical Chemistry C, 2009, 113(11):4426-4432 10.1021/jp8088148 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1191
HTML全文浏览数:733
PDF下载数:705
施引文献:0
出版历程
刊出日期:2018-04-22
-->
中试规模下蜂窝式Mn-Ce/Al2O3脱硝催化剂的低温性能
王成志1,,曹鹏1,
颜鑫2,
孔伟2
1.石河子大学化学化工学院,新疆兵团化工绿色过程重点实验室,石河子 832003
2.石河子天富南热电有限公司,石河子832000
基金项目: 国家高技术研究发展计划(863)项目(2015AA03A401)
关键词: 选择性催化还原/
蜂窝体Mn-Ce/Al2O3/
中试/
催化/
低温脱硝
摘要:采用自行设计的反应装置,研究中试规模条件下关键参数对蜂窝堇青石Mn-Ce/Al2O3催化剂脱硝效率的影响以及抗硫抗水性能,并通过扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)和比表面积测试仪(BET)研究催化剂的理化性质。结果表明,反应温度、空速、氨氮比对催化活性均有明显影响,同时,催化剂对氮氧化物浓度有较强适应性,NO浓度在134~469 mg·m-3区间内脱硝效率均可保持在75%以上。催化剂在100 oC,空速3 336 h-1,[NH3]/[NO]为0.9,烟气量20 m3·h-1条件下连续反应168 h,其催化效率可以稳定保持在75%~80%,说明蜂窝式Mn-Ce/Al2O3具有良好的稳定性。催化剂在含5%H2O气氛中催化效率由80%减少至60%,在去除H2O后抑制作用消失。反应气中通入143 mg·m-3 SO2后催化效率由80%降低至62%,停止通入SO2后活性不能恢复。同时通入143 mg·m-3 SO2和5%H2O,催化效率下降并维持在53%左右,停止通入后活性恢复至67%。通过对SO2中毒前后的催化剂表征分析可得,SO2存在条件下生成的硫酸铵盐堵塞了20 nm孔径以下的部分孔道,覆盖了催化剂表面活性位点,是引起效率下降的主要原因。
English Abstract
Low temperature performance of honeycomb Mn-Ce/Al2O3 denitration catalyst in the pilot-scale
WANG Chengzhi1,,CAO Peng1,
YAN Xin2,
KONG Wei2
1.Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
2.Shihezi Tianfu South Thermoelectric Co.Ltd., Shihezi 832000, China
Keywords: selective catalytic reduction/
Mn-Ce/Al2O3 honeycomb/
pilot-scale/
catalyst/
low-temperature
Abstract:A self-designed pilot scale reaction device was used to study the influence of key parameters on the denitration efficiency of honeycomb Mn-Ce/Al2O3 catalyst and the performance of SO2 and H2O resistance. Furthermore, the experiments of SEM, EDS, XRD, BET were carried out respectively in order to obtain physicochemical properties of the prepared catalysts. The result showed that reaction temperature, space velocity and mole ratio of NH3/NO have a significant impact on the catalysts’ performance. Meanwhile, the catalysts adapted well to the change of the concentration of NOx. The NOx conversion stayed above 75% in the range from 134 to 469 mg·m-3 of the NOx concentration. When the reaction temperature was 100 °C, space velocity was 3 336 h-1, NH3 to NOx ratio was 0.9 and the total flow rate was maintained at 20 m3·h-1, the catalytic efficiency can be steady at 75%~80% after 168 hours reaction. After introduction of 143 mg·m-3 SO2 into the reactants, NO conversion ratio decreased to 62% and activity cannot be completely recovered after SO2 is shut off. The NO conversion ratio of Mn-Ce/Al2O3 declined quickly to 60% when being introduced 5% H2O into the simulated gas. Then, the NO conversion ratio could raise quickly as soon as H2O was closed. After in the presence of 143 mg·m-3 SO2 and 5% H2O together, NO conversion was maintained at 53%. The activity of the deactivated catalyst could recover to 67% after removing H2O and SO2. It is mainly because the presence of SO2 result in formed ammonium sulfate on the catalyst surface which covers the active site and blocks the pore size of below 20 nm.