杨小明1,
孙境求2,3,
赵凯2,
胡晓宇4,
胡承志2,3
1.河北工业大学土木与交通学院,天津 300401
2.中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
3.中国科学院大学,北京 100049
4.膜材料与膜应用国家重点实验室,天津膜天膜科技股份有限公司,天津 300457
基金项目: 国家自然科学基金重点资助项目(51678556)
Parameters optimization on electrocoagulation-ultrafiltration process for removing fluoride and controlling residual aluminum
LIANG Yan1,2,,YANG Xiaoming1,
SUN Jingqiu2,3,
ZHAO Kai2,
HU Xiaoyu4,
HU Chengzhi2,3
1.School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
2.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.State Key Laboratory of Membrane Materials and Membrane Applications, Tianjin Motimo Membrane Technology Co.Ltd., Tianjin 300457, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:电絮凝-超滤(electrocoagulation-ultrafiltration process,EC-UF)工艺在饮用水除氟方面具有良好的应用前景,但是存在着能耗较高和出水余铝不达标的问题。实验通过优化电絮凝参数和pH,解决了EC-UF工艺能耗高和出水余铝不达标问题。主要考察了电絮凝pH、电流密度、水力停留时间、初始氟浓度对氟离子的去除效果以及膜污染的控制情况,并分析了铝络合物对氟的去除机理。结果表明,在电流密度10 A·m-2、水力停留时间30 min、pH在6.0~7.0的最佳工艺条件下,EC-UF工艺的出水氟、余铝含量均可达到生活饮用水水质标准。与传统工艺相比,调控pH的EC-UF工艺能耗为0.467 kWh·g-1,降低了33.9%,并且具有较好的出水水质,表明pH的调控是EC-UF除氟控铝工艺优化的关键因素。
关键词: 电絮凝/
膜反应器/
氟/
膜污染/
饮用水
Abstract:The electrocoagulation-ultrafiltration (EC-UF) process was widely employed in fluorine removal from drinking water. However, its further applicationwas limited due to the high energy consumption and high residual aluminum concentration in effluent. In this study, the problems of high energy consumption and the excess residual aluminum in the effluentof the EC-UF process were solved by optimizing the electrocoagulation parameters and the pH of the electro-flocculation tank. The effects of pH, current density, hydraulic retention time, initial fluorine concentration on fluoride ion removal and membrane fouling were studied, and the de-fluoride mechanism by aluminum complex was also analyzed. The results demonstrated that the concentrations of fluorine and residual aluminum in effluent of the EC-UF process met the water quality standard for drinking water under optimized conditions, such as a current density of 10 A·m-2, a HRT of 30 min and the constant pH from 6.0 to 7.0. Compared with the non-regulated pH process, theenergy consumption of pH-adjusted EC-UF process is 0.467 kWh?g-1, being reduced by 33.9%, and good effluent qualityis obtained, which indicate that pH adjustment is the key factor in EC-UF process operation.
Key words:electrocoagulation/
membrane reactor/
fluorine/
membrane fouling/
drinking water.
[1] | APAMBIRE W B, BOYLE D R, MICHEL F A.Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana[J].Environmental Geology,1997,33(1):13-24 |
[2] | REDDY N B, PRASAD K S.Pyroclastic fluoride in groundwater in some parts of Tadpatri Taluk, Anantapur District, Andhra Pradesh[J].Indian Journal of Environmental Health,2003,45(4):285-288 |
[3] | 何赞.凝聚-吸附去除饮用水中典型有害阴离子的应用研究[D].北京:中国科学院大学,2015 |
[4] | 任福弘,曾溅辉,刘文生,等.高氟地下水的水文地球化学环境及氟的赋存形式与地氟病患病率的关系:以华北平原为例[J]. 地球学报,1996,17(1):85-97 |
[5] | 中国人民共和国卫生部. 生活饮用水卫生标准[M]. 北京:中国建筑工业出版社,1976 |
[6] | 凌波.铝盐混凝沉淀除氟[J]. 水处理技术,1990,16(6):418-421 |
[7] | 李向东,冯启言,赵璇,等.电絮凝法去除饮用水中氟的研究[J].安全与环境学报. 2006,6(2):33-35 |
[8] | FENG S, CHEN X, PING G, et al.Electrochemical removal of fluoride ions from industrial wastewater[J].Journal of Daqing Petroleum Institute,2003,58(3/4/5/6):987-993 10.1016/S0009-2509(02)00639-5 |
[9] | 赵凯,杨春风,孙境求,等.电絮凝-超滤组合技术处理含铜废水[J]. 环境工程学报.2017,11(6):3352-3356 10.12030/j.cjee/201604035 |
[10] | 王树青,胡承志,杨春风,等.电絮凝-超滤除氟工艺参数优化研究[J]. 环境工程学报.2015,9(7):3093-3098 |
[11] | FAN X, PARKER D J, SMITH M D.Adsorption kinetics of fluoride on low cost materials[J].Water Research,2003,37(20):4929-4937 10.1016/j.watres.2003.08.014 |
[12] | HU C Y, LO S L, KUAN W H.Effects of the molar ratio of hydroxide and fluoride to Al(III) on fluoride removal by coagulation and electrocoagulation[J].Journal of Colloid & Interface Science,2005,283(2):472-476 10.1016/j.jcis.2004.09.045 |
[13] | SUN J, HU C, TONG T, et al.Performance and mechanisms of ultrafiltration membrane fouling mitigation by coupling coagulation and applied electric field in a novel electrocoagulation membrane reactor[J].Environmental Science & Technology,2017,51(15):8544-8551 10.1021/acs.est.7b01189 |
[14] | ZHAO H, LIU H, QU J.Effect of pH on the aluminum salts hydrolysis during coagulation process: formation and decomposition of polymeric aluminum species[J].Journal of Colloid & Interface Science,2009,330(1):105-112 10.1016/j.jcis.2008.10.020 |
[15] | LIU R, GONG W, LAN H, et al.Defluoridation by freshly prepared aluminum hydroxides[J].Chemical Engineering Journal,2011,175(1):144-149 10.1016/j.cej.2011.09.083 |
[16] | TOWNSEND G S, BACHE B W.Kinetics of aluminium fluoride complexation in single- and mixed-ligand systems[J].Talanta,1992,39(11):1531-1535 |
[17] | JIN X, QIAN Z, LU B, et al.Density functional theory study on aqueous aluminum-fluoride complexes: Exploration of the intrinsic relationship between water-exchange rate constants and structural parameters for monomer aluminum complexes[J].Environmental Science & Technology,2011,45(1):288-293 10.1021/es102872h |
[18] | CORBILLON M S, OLAZABAL M A, MADARIAGA J M.Potentiometric study of aluminium-fluoride complexation equilibria and definition of the thermodynamic model[J].Journal of Solution Chemistry,2008,37(4):567-579 |
[19] | LIU R, ZHU L, GONG W, et al.Effects of fluoride on coagulation performance of aluminum chloride towards kaolin suspension[J].Colloids & Surfaces A: Physicochemical & Engineering Aspects,2013,421(1):84-90 10.1016/j.colsurfa.2012.12.047 |
[20] | HARIF T,KHAI M, ADIN A.Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics[J].Water Research,2012,46:3177-3188 10.1016/j.watres.2012.03.034 |
[21] | XU Y, CHEN T, CUI F, et al.Effect of reused alum-humic-flocs on coagulation performance and floc characteristics formed by aluminum salt coagulants in humic-acid water[J].Chemical Engineering Journal,2016,287:225-232 10.1016/j.cej.2015.11.017 |
[22] | HOWE K J, MARWAH A, CHIU K P, et al.Effect of coagulation on the size of MF and UF membrane foulants[J].Environmental Science & Technology,2006,40(24):7908-7913 10.1021/es0616480 |
[23] | TREMBLAY L, ALAOUI G, LEGER M N.Characterization of aquatic particles by direct FTIR analysis of filters and quantification of elemental and molecular compositions[J].Environmental Science & Technology,2011,45(22):9671-9679 10.1021/es202607n. |
[24] | HU C, SUN J, WANG S, et al.Enhanced efficiency in HA removal by electrocoagulation through optimizing flocs properties: Role of current density and pH[J].Separation & Purification Technology,2017,175:248-254 10.1016/j.seppur.2016.11.036 |
[25] | 李静波,赵璇,李福志.电絮凝-微滤去除饮用水中的氟[J]. 清华大学学报(自然科学版).2007,47(9):1495-1497 |
[26] | 杨天明,王洪杰,兰华春,等.电絮凝-气浮-砂滤组合工艺除氟[J]. 环境工程学报.2012,6(6):1890-1894 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1065
HTML全文浏览数:942
PDF下载数:96
施引文献:0
出版历程
刊出日期:2018-11-12
-->
电絮凝-超滤除氟控铝工艺参数优化
梁言1,2,,杨小明1,
孙境求2,3,
赵凯2,
胡晓宇4,
胡承志2,3
1.河北工业大学土木与交通学院,天津 300401
2.中国科学院生态环境研究中心,环境水质学国家重点实验室,北京 100085
3.中国科学院大学,北京 100049
4.膜材料与膜应用国家重点实验室,天津膜天膜科技股份有限公司,天津 300457
基金项目: 国家自然科学基金重点资助项目(51678556)
关键词: 电絮凝/
膜反应器/
氟/
膜污染/
饮用水
摘要:电絮凝-超滤(electrocoagulation-ultrafiltration process,EC-UF)工艺在饮用水除氟方面具有良好的应用前景,但是存在着能耗较高和出水余铝不达标的问题。实验通过优化电絮凝参数和pH,解决了EC-UF工艺能耗高和出水余铝不达标问题。主要考察了电絮凝pH、电流密度、水力停留时间、初始氟浓度对氟离子的去除效果以及膜污染的控制情况,并分析了铝络合物对氟的去除机理。结果表明,在电流密度10 A·m-2、水力停留时间30 min、pH在6.0~7.0的最佳工艺条件下,EC-UF工艺的出水氟、余铝含量均可达到生活饮用水水质标准。与传统工艺相比,调控pH的EC-UF工艺能耗为0.467 kWh·g-1,降低了33.9%,并且具有较好的出水水质,表明pH的调控是EC-UF除氟控铝工艺优化的关键因素。
English Abstract
Parameters optimization on electrocoagulation-ultrafiltration process for removing fluoride and controlling residual aluminum
LIANG Yan1,2,,YANG Xiaoming1,
SUN Jingqiu2,3,
ZHAO Kai2,
HU Xiaoyu4,
HU Chengzhi2,3
1.School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China
2.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.State Key Laboratory of Membrane Materials and Membrane Applications, Tianjin Motimo Membrane Technology Co.Ltd., Tianjin 300457, China
Keywords: electrocoagulation/
membrane reactor/
fluorine/
membrane fouling/
drinking water
Abstract:The electrocoagulation-ultrafiltration (EC-UF) process was widely employed in fluorine removal from drinking water. However, its further applicationwas limited due to the high energy consumption and high residual aluminum concentration in effluent. In this study, the problems of high energy consumption and the excess residual aluminum in the effluentof the EC-UF process were solved by optimizing the electrocoagulation parameters and the pH of the electro-flocculation tank. The effects of pH, current density, hydraulic retention time, initial fluorine concentration on fluoride ion removal and membrane fouling were studied, and the de-fluoride mechanism by aluminum complex was also analyzed. The results demonstrated that the concentrations of fluorine and residual aluminum in effluent of the EC-UF process met the water quality standard for drinking water under optimized conditions, such as a current density of 10 A·m-2, a HRT of 30 min and the constant pH from 6.0 to 7.0. Compared with the non-regulated pH process, theenergy consumption of pH-adjusted EC-UF process is 0.467 kWh?g-1, being reduced by 33.9%, and good effluent qualityis obtained, which indicate that pH adjustment is the key factor in EC-UF process operation.