删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

PAHs污染土壤的热修复可行性

本站小编 Free考研考试/2021-12-31

陈星1,,
宋昕1,
吕正勇2,
任家强1,3,
丁达1,3,
林娜1,
魏昌龙1,3,
扶恒4
1.中国科学院南京土壤研究所,南京 210008
2.北京高能时代环境技术股份有限公司,北京 100095
3.中国科学院大学,北京 100049
4.南京康地环保科技有限公司,南京 210008
基金项目: 中国科学院重点部署项目(KFZD-SW-303)
中国科学院科技服务网络计划(STS计划)项目(KFJ-STS-ZDTP-039)




Feasibility of thermal remediation of soil contaminated with PAHs

CHEN Xing1,,
SONG Xin1,
LYU Zhengyong2,
REN Jiaqiang1,3,
DING Da1,3,
LIN Na1,
WEI Changlong1,3,
FU Heng4
1.Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2.Beijing GeoEnviron Engineering & Technology Inc., Beijing 100095, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.Nanjing Kangdi Environmental Protection Technology Co.Ltd., Nanjing 210008, China

-->

摘要
HTML全文
(0)(0)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以某煤制气厂污染场地中16种US EPA优先控制多环芳烃(Σ16 PAHs)为目标污染物进行了热修复批量实验和可行性实验。热修复批量实验结果表明,当热修复温度为400 ℃、加热时间为8 h时,土壤中的Σ16 PAHs去除率达99.9%。热修复可行性实验选择重污染、中污染和轻污染土壤以400 ℃作为目标温度,恒温72 h进行实验。热修复前后不同程度污染土壤的Σ16 PAHs的总去除率均可达到99.9%,但重污染土壤浓度非常高,部分苯并类物质未达到修复目标值,需进一步延长加热时间或提高加热温度保证达到修复目标值。土壤土工参数影响分析结果表明,热修复后土壤颗粒粒径呈增大趋势,土壤稳定性、抗压强度均增强。此外,土壤中可溶性盐含量增多,盐渍化程度增大。
关键词: 污染土壤/
热修复/
多环芳烃/
土工参数/
可行性实验

Abstract:Batch experiments and feasibility study of thermal remediation were conducted for soils contaminated with the US EPA 16 priority polycyclic aromatic hydrocarbons (Σ16 PAHs). The results of batch experiment indicated that the removal efficiencies of Σ16 PAHs reached 99.9% after thermal treatment for 8 h at 400 ℃. The feasibility study experiments were carried out with a target temperature with 400 ℃ for 72 h. The total removal efficiencies of Σ16 PAHs reached 99.9% as well, however, several contaminants of concern among the Σ16 PAHs concentrations exceeded the remediation cleanup values, especially those compounds in the benzo group. The soil particle size, soil stability and compressive strength increased after the thermal remediation based on the analysis between soil parameters before and after treatment. The soluble salt content increased post thermal remediation, indicating an increase in the soil salinization.
Key words:contaminated soil/
thermal remediation/
PAHs/
geo-technical properties/
feasibility experiment.

加载中
[1] MAGI E, BIANCO R, IANNI C, et al.Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea[J].Environmental Pollution, 2002, 119(1): 91-98 10.1016/S0269-7491(01)00321-9
[2] 杨发忠, 颜阳, 张泽志, 等. 多环芳烃研究进展[J]. 云南化工, 2005, 32(2): 44-48
[3] 张惠灵, 王宇, 周杨, 等. 某焦化厂PM2.5中多环芳烃的排放特征及其对周边环境影响[J]. 环境工程学报, 2017, 10(10): 5571-5576 10.12030/j.cjee.201611095
[4] 刘志阳. 多环芳烃污染土壤修复技术研究进展[J]. 污染防治技术, 2015, 28(3): 19-21
[5] VELA N, MARTíNEZ-MENCHóN M, NAVARRO G, et al.Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight[J].Journal of Photochemistry and Photobiology A: Chemistry, 2012, 232: 32-40 10.1016/j.jphotochem.2012.02.003
[6] 龚香宜, 何炎志, 孙云雷. 江汉平原四湖流域上区地下水中多环芳烃分布特征与源解析[J]. 环境科学学报, 2015, 35(3): 789-796
[7] FLOTRON V, DELTEIL C, PADELLEC Y, et al.Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process[J].Chemosphere, 2005, 59(10): 1427-1437 10.1016/j.chemosphere.2004.12.065
[8] BAVEL V B.Comparison of Fenton’s reagent and ozone oxidation of polycyclic aromatic hydrocarbons in aged contaminated soils[J].Journal of Soils & Sediments, 2006, 6(4): 208–214
[9] BROWN G S, BARTON L L, THOMSON B M.Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons[J].Waste Management, 2003, 23(8): 737-740 10.1016/S0956-053X(02)00119-8
[10] FERRARESE E, ANDREOTTOLA G, OPREA I A.Remediation of PAH-contaminated sediments by chemical oxidation[J].Journal of Hazardous Materials, 2008, 152(1): 128-139 10.1016/j.jhazmat.2007.06.080
[11] 邹德勋, 骆永明, 徐凤花. 土壤环境中多环芳烃的微生物降解及联合生物修复[J]. 土壤, 2007, 39(3): 334-340
[12] DAVIS E L.Ground water issue: How heat can enhance in-situ soil and aquifer remediation-important chemical properties and guidance on choosing the appropriate technique [R].EPA, Office of Solid Waste and Emergency Response, Washington, D.C., 1997
[13] LEMMING G, HAUSCHILD M Z, CHAMBON J, et al.Environmental impacts of remediation of a trichloroethene contaminated site: Life cycle assessment of remediation alternatives[J].Environmental Science & Technology, 2010, 44: 9163-9169
[14] GAO Y F, YANG H, ZHAN X H, et al.Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing [J].Environmental Science and Pollution Research, 2013, 20: 1482-1492 10.1007/s11356-012-0991-0
[15] MCALEXANDER B L, KREMBS F J, CARDENOSA MENDOZA M.Treatability testing for weathered hydrocarbons in soils: Bioremediation, soil washing, chemical oxidation, and thermal desorption [J].Soil and Sediment Contamination, 2015, 24: 882-897 10.1080/15320383.2015.1064088
[16] HUNG P C, CHANG S H, OUYANG C C, et al.Simultaneous removal of PCDD/Fs, pentachlorophenol and mercury from contaminated soil [J].Chemosphere, 2016, 144: 50-58 10.1016/j.chemosphere.2015.08.058
[17] LIM M W, LAU E V, POH P E.A comprehensive guide of remediation technologies for oil contaminated soil: Present works and future directions [J].Marine Pollution Bulletin, 2016, 109: 14-45 10.1016/j.marpolbul.2016.04.023
[18] MECHATI F, ROTH E, RENAULT V, et al.Pilot scale and theoretical study of thermal remediation of soils[J].Environmental Engineering Science, 2004, 21:361-370 10.1089/109287504323067003
[19] 中华人民共和国环境保护部. 土壤和沉积物 多环芳烃的测定 高效液相色谱法: HJ 784-2016[S]. 北京: 中国环境科学出版社, 2016
[20] 中华人民共和国水利部. 土工试验方法标准: GB/T 50123-1999[S]. 北京:中国计划出版社, 1999
[21] 北京市环境保护局. 场地土壤环境风险评价筛选值: DB11/T 811-2011[S]. 北京: 中国农业出版社, 2012
[22] O’BRIEN P L, DESUTTER T M, CASEY F X, et al.Implications of using thermal desorption to remediate contaminated agricultural soil: Physical characteristics and hydraulic processes[J].Journal of Environmental Quality, 2016, 45(4): 1430-1436 10.2134/jeq2015.12.0607
[23] CHEN H E, JIANG Y L, ZHANG W, et al.Experimental study of the stabilization effect of cement on diesel-contaminated soil[J].Quarterly Journal of Engineering Geology and Hydrogeology 2017, 50(2): 199-205 10.1144/qjegh2016-115
[24] 南京水利科学研究院. 土工试验规程:SL 237-1999[S]. 北京:中国水利水电出版社, 1999
[25] 中华人民共和国住房和城乡建设部. 建筑地基基础设计规范:GB 50007-2011[S]. 北京:中国建筑工业出版社, 2011
[26] O’BRIEN P L, DESUTTER, T M, CASEY F X M, et al.Thermal remediation alters soil properties:A review[J].Journal of Environmental Management, 2018, 206: 826-835 10.1016/j.jenvman.2017.11.052
[27] 陈国兴, 樊良本, 陈甦. 土质学与土力学[M]. 2版. 北京:中国水利水电出版社, 知识产权出版社, 2006
[28] 汪小庆. 浅谈如何提高混凝土的耐硫酸盐腐蚀性[J]. 铁道工程学报, 2008, 25(7):83-85
[29] 张光辉. 混凝土结构硫酸盐腐蚀研究综述[J]. 混凝土, 2012(1):49-54
[30] 中华人民共和国建设部. 岩土工程勘察规范:GB 50021-2001[S]. 北京:中国建筑工业出版社, 2009



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:865
HTML全文浏览数:716
PDF下载数:172
施引文献:0
出版历程

刊出日期:2018-10-11




-->








PAHs污染土壤的热修复可行性

陈星1,,
宋昕1,
吕正勇2,
任家强1,3,
丁达1,3,
林娜1,
魏昌龙1,3,
扶恒4
1.中国科学院南京土壤研究所,南京 210008
2.北京高能时代环境技术股份有限公司,北京 100095
3.中国科学院大学,北京 100049
4.南京康地环保科技有限公司,南京 210008
基金项目: 中国科学院重点部署项目(KFZD-SW-303) 中国科学院科技服务网络计划(STS计划)项目(KFJ-STS-ZDTP-039)
关键词: 污染土壤/
热修复/
多环芳烃/
土工参数/
可行性实验
摘要:以某煤制气厂污染场地中16种US EPA优先控制多环芳烃(Σ16 PAHs)为目标污染物进行了热修复批量实验和可行性实验。热修复批量实验结果表明,当热修复温度为400 ℃、加热时间为8 h时,土壤中的Σ16 PAHs去除率达99.9%。热修复可行性实验选择重污染、中污染和轻污染土壤以400 ℃作为目标温度,恒温72 h进行实验。热修复前后不同程度污染土壤的Σ16 PAHs的总去除率均可达到99.9%,但重污染土壤浓度非常高,部分苯并类物质未达到修复目标值,需进一步延长加热时间或提高加热温度保证达到修复目标值。土壤土工参数影响分析结果表明,热修复后土壤颗粒粒径呈增大趋势,土壤稳定性、抗压强度均增强。此外,土壤中可溶性盐含量增多,盐渍化程度增大。

English Abstract






--> --> --> 参考文献 (30)
相关话题/土壤 污染 北京 实验 中国科学院