郑蕾1
1.西安科技大学地质与环境学院,西安710054
基金项目: 陕西省工业攻关计划项目 (2013GY2-06)
Performance and mechanism of Cr(VI) contaminated soil remediation by bio-iron
CHENG Aihua1,,ZHENG Lei1
1.College of Geology and Environment, Xi′an University of Science and Technology, Xi′an 710054, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:以活性污泥与生物铁作为修复剂,对比时间、pH、污泥投加量、Cr(VI)初始浓度对活性污泥、生物铁去除土壤中Cr(VI)的影响;考察生物铁对土壤中Cr(VI)的还原率;采用SEM、XRD、XPS对生物铁修复前后的Cr(VI)污染土壤进行表征分析。实验结果表明:在土壤中,生物铁对Cr(VI)的修复效果优于活性污泥,当pH为6.0,Cr(VI)初始浓度为300 mg·kg-1,生物铁和活性污泥的投加量均为19.57 mg·g-1,修复时间为45 d时,土壤中Cr(VI)经活性污泥与生物铁修复后浓度分别为31.42、19.69 mg·kg-1,去除率分别为89.52%、94.12%。生物铁修复土壤Cr(VI)以还原作用为主,吸附为辅。Cr(VI)污染土壤被生物铁修复后出现了FeOOH、Fe3O4以及Fe3O4与FeCr2O4的混合物,部分Cr(VI)被还原为Cr(III),铁被氧化为Fe2+、Fe3+。
关键词: 生物铁/
活性污泥/
土壤/
Cr(VI)/
还原
Abstract:In this study, activated sludge and bio-iron were cultivated in the same conditions as remediation reagents, and the effects of the influence factors such as time, pH, sludge dosage, and Cr(VI) initial concentration on Cr(VI) removalin soil were studied, as well as the reduction ratio of Cr(VI) in soil by bio-iron. The original and remediated Cr(VI) contaminated soils were characterized by SEM, XRD and XPS. Experimental results showed that bio-iron had a better effect on Cr(VI) removal in soil than activated sludge. When pH was 6.0, initial Cr(VI) concentration was 300mg·kg-1, each dosage of bio-iron and activated sludge was 19.57mg·g-1, and remediation time was 45d, the Cr(VI) concentrations in the remediated soils by activated sludge and bio-iron decreased to 31.42mg·kg-1 and 19.69mg·kg-1, and the corresponding removal ratios were 89.52% and 94.12%, respectively. The remediation of Cr(VI) in soil by bio-iron could be mainly attributed to the reduction effect, and absorption is an auxiliary function. The FeOOH, Fe3O4, mixture of Fe3O4 and FeCr2O4were observed in the Cr(VI) contaminated soil remediated by bio-iron. A partial Cr (VI) anions were reduced to Cr (III), and iron was oxidized to Fe2+ and Fe3+.
Key words:bio-iron/
activated sludge/
soil/
Cr(VI)/
reduction.
[1] | 张辉, 付融冰, 郭小品, 等. 铬污染土壤的还原稳定化修复[J]. 环境工程学报,2017,11(11):6163-6168 10.12030/j.cjee.201702022 |
[2] | 谢婷, 李文斌, 孟昭福, 等.BS-12+DTAB 复配修饰膨润土吸附Cr(VI) 和Cd2+ 的研究[J]. 农业环境科学学报,2017,36(9):1778-1786 10.11654/jaes.2017-0279 |
[3] | 朱宇恩, 张倩茹, 张维荣, 等. 基于文献计量的Cr 污染土壤修复发展历程剖析(2001—2015 年)[J]. 农业环境科学学报,2017,36(3):409-419 10.11654/jaes.2016-1083 |
[4] | 范琴, 王海燕, 颜湘华, 等. 某典型铬盐厂污染场地Cr(Ⅵ) 还原菌的筛选、鉴定及还原特性[J]. 环境工程学报,2018,12(3):863-875 10.12030/j.cjee.201709216 |
[5] | MIRETZKY P, CIRELI A F.Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review[J].Journal of Hazardous Materials,2010,180(1/2/3):1-19 10.1016/j.jhazmat.2010.04.060 |
[6] | VIRAL Y S, DEVAYANI R T, SHAILESH R D.Optimization of chromium(VI) detoxi-fication by pseudomonas aeruginosa and its application for treatment of industrial waste and contaminated soil[J].Bioremediation Journal,2014,18(2):128-135 10.1080/10889868.2013.834872 |
[7] | LIU Y, JIN R F, LIU G F, et al.Effects of hexavalent chromium on performance, extra-cellular polymeric substances and microbial community structure of anaerobic activated sludge in a sequencing batch reactor [J].Journal of Chemical Technology and Biotechnology,2017,92(10):2719-2730 10.1002/jctb.5294 |
[8] | MAGALI C, CHRISTOPHE D.Heavy metals uptake by sonicated activated sludge: Relation with floc surface properties [J].Journal of Hazardous Materials,2009,162:652-660 10.1016/j.jhazmat.2008.05.066 |
[9] | 刘帅霞, 孙哲, 曹瑞雪. 秸秆-复合菌-污泥联合修复铬污染土壤技术[J]. 环境工程学报,2017,11(10):5696-5702 10.12030/j.cjee.201611058 |
[10] | 张恩华, 戴幼芬, 肖勇, 等. 还原Cr( VI) 的混菌胞外聚合物和细菌群落结构分析[J]. 中国环境科学,2017,37(1):352-357 |
[11] | 苏润华, 丁丽丽, 任洪强. 纳米零价铁(NZVI) 对厌氧产甲烷活性、污泥特性和微生物群落结构的影响[J]. 环境科学,2018,39(7):1-14 10.13227/j.hjkx.201711268 |
[12] | 张宁博, 李祥, 黄勇, 等. 零价铁自养反硝化过程活性污泥矿化及解决措施[J]. 环境科学,2017,38(9):3793-3800 10.13227/j.hjkx.201703032 |
[13] | 刘艳, 王东文, 陈晓谋, 等. 生物铁污泥特性分析及其处理金属清洗废水研究[J]. 水处理技术,2015,41(1):81-85 |
[14] | YIN W Z, LI Y T, WU J H, et al.Enhanced Cr(VI) removal from groungwater by Fe0-H2O system with bio-amended iron corrosion[J].Journal of Hazardous Materials,2017,332:42-50 10.1016/j.jhazmat.2017.02.045 |
[15] | DUAN S, MA W, PAN Y Z, et al.Synthesis of magnetic biochar from iron sludge for the enhancement of Cr(VI) removal from solution[J].Journal of Taiwan Institute of Chemical Engineers,2017,80:835-841 10.1016/j.jtice.2017.07.002 |
[16] | 杨宝滋. 表面改性活性炭对铬污染土壤的稳定化研究[D]. 武汉: 武汉科技大学,2015 |
[17] | 徐义邦, 樊孝俊, 龚娴. 二苯碳酰二肼分光光度法测定水中六价铬方法的改进[J]. 中国给水排水,2015,31(8):106-108 |
[18] | 喻秀, 张思维, 王丽敏, 等. 二苯碳酰二肼光度法测定土壤中总铬[J]. 浙江农业科学,2013(3):406-407 |
[19] | 何陈. 稳定纳米零价铁的制备与修复土壤中六价铬的研究[D]. 上海: 上海大学,2015 |
[20] | 熊维. 微波辅助球墨还原含六价铬废水机理研究[D]. 长沙: 湖南大学,2016 |
[21] | 熊汇欣, 周立祥. 不同晶型羟基氧化铁(FeOOH) 的形成及其在吸附去除Cr(VI) 上的作用[J]. 岩石矿物学杂志,2008,27(6):559-566 |
[22] | 杨明.FeOOH 的生物化学合成及其对重金属的去除[D]. 扬州: 扬州大学,2014 |
[23] | 熊汇欣. 不同晶型羟基氧化铁(FeOOH) 的形成及其吸附去除Cr(VI) 的作用[D]. 南京: 南京农业大学,2008 |
[24] | SHEN Y F, TANG J, NIE Z H, et al.Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification[J].Separation and Purification Technology,2009,68(3):312-319 10.1016/j.seppur.2009.05.020 |
[25] | 周廷恒. 包覆纳米铁羧甲基壳聚糖凝胶球去除水中六价铬研究[D]. 成都: 成都理工大学,2016 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:515
HTML全文浏览数:413
PDF下载数:119
施引文献:0
出版历程
刊出日期:2018-10-11
-->
生物铁修复Cr(VI)污染土壤的性能及机理
程爱华1,,郑蕾1
1.西安科技大学地质与环境学院,西安710054
基金项目: 陕西省工业攻关计划项目 (2013GY2-06)
关键词: 生物铁/
活性污泥/
土壤/
Cr(VI)/
还原
摘要:以活性污泥与生物铁作为修复剂,对比时间、pH、污泥投加量、Cr(VI)初始浓度对活性污泥、生物铁去除土壤中Cr(VI)的影响;考察生物铁对土壤中Cr(VI)的还原率;采用SEM、XRD、XPS对生物铁修复前后的Cr(VI)污染土壤进行表征分析。实验结果表明:在土壤中,生物铁对Cr(VI)的修复效果优于活性污泥,当pH为6.0,Cr(VI)初始浓度为300 mg·kg-1,生物铁和活性污泥的投加量均为19.57 mg·g-1,修复时间为45 d时,土壤中Cr(VI)经活性污泥与生物铁修复后浓度分别为31.42、19.69 mg·kg-1,去除率分别为89.52%、94.12%。生物铁修复土壤Cr(VI)以还原作用为主,吸附为辅。Cr(VI)污染土壤被生物铁修复后出现了FeOOH、Fe3O4以及Fe3O4与FeCr2O4的混合物,部分Cr(VI)被还原为Cr(III),铁被氧化为Fe2+、Fe3+。
English Abstract
Performance and mechanism of Cr(VI) contaminated soil remediation by bio-iron
CHENG Aihua1,,ZHENG Lei1
1.College of Geology and Environment, Xi′an University of Science and Technology, Xi′an 710054, China
Keywords: bio-iron/
activated sludge/
soil/
Cr(VI)/
reduction
Abstract:In this study, activated sludge and bio-iron were cultivated in the same conditions as remediation reagents, and the effects of the influence factors such as time, pH, sludge dosage, and Cr(VI) initial concentration on Cr(VI) removalin soil were studied, as well as the reduction ratio of Cr(VI) in soil by bio-iron. The original and remediated Cr(VI) contaminated soils were characterized by SEM, XRD and XPS. Experimental results showed that bio-iron had a better effect on Cr(VI) removal in soil than activated sludge. When pH was 6.0, initial Cr(VI) concentration was 300mg·kg-1, each dosage of bio-iron and activated sludge was 19.57mg·g-1, and remediation time was 45d, the Cr(VI) concentrations in the remediated soils by activated sludge and bio-iron decreased to 31.42mg·kg-1 and 19.69mg·kg-1, and the corresponding removal ratios were 89.52% and 94.12%, respectively. The remediation of Cr(VI) in soil by bio-iron could be mainly attributed to the reduction effect, and absorption is an auxiliary function. The FeOOH, Fe3O4, mixture of Fe3O4 and FeCr2O4were observed in the Cr(VI) contaminated soil remediated by bio-iron. A partial Cr (VI) anions were reduced to Cr (III), and iron was oxidized to Fe2+ and Fe3+.