张美一1,
潘纲1,3
1.中国科学院生态环境研究中心,环境纳米技术与健康效应重点实验室,北京 100085
2.中国科学院大学,北京 100049
3.诺丁汉特伦特大学动物、乡村与环境科学学院,诺丁汉 NG250QF
基金项目: 国家自然科学基金资助项目(21377003)
中国科学院先导项目(XDA09030203)
国家重点基础研究发展计划项目(2017YFA0207204)
北京市自然科学基金资助项目(8162040)
Efficiency and mechanism of phosphate removal by ultrathin layered double hydroxide nanosheets
LIU Chen1,2,,ZHANG Meiyi1,
PAN Gang1,3
1.Key Laboratory of Environmental Nano-Technology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG250QF, England
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为了开发一种新型高效的除磷吸附剂,通过甲酰胺一步合成法制备了不同镁铝反应物浓度的水滑石纳米片(LDHns-F1~4),并利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)等技术对LDHns-F的形貌进行了表征。结果表明,该方法成功合成了超薄水滑石纳米片,横向尺寸约30 nm,呈板状形貌和六角形微晶的特点。冷干后的水滑石纳米片具有水滑石XRD特征峰,干燥过程会造成纳米片的部分堆叠。等温吸附实验结果表明,纳米片LDHns-F3(镁铝反应物摩尔浓度为0.08、0.04 mol·L-1)对磷酸盐的饱和最大吸附量为128.0 mg·g-1, 固磷能力比层状水滑石LDH-P提高61%。吸附反应在15 min后达到平衡,吸附动力学符合伪二级动力学方程,表明化学吸附可能是LDHns-F3吸附磷酸根的速率控制步骤。通过Zeta电位和X射线光电子能谱(XPS)对吸附机制进行分析,结果表明磷酸盐在水滑石纳米片层板表面通过羟基络合形成了内层络合物。水滑石纳米片层表面存在的大量羟基使其对含氧阴离子型污染物具有良好的吸附性能,在高浓度含磷水体处理中具有广阔的应用前景。
关键词: 吸附剂/
水滑石/
纳米片/
磷酸根/
水处理
Abstract:Layered double hydroxide (LDH) nanosheets were prepared in formamide by a one-step synthesis method with different concentrations of magnesium (Mg) and aluminum (Al) reactants (LDHns-F1~4), with the aim to produce an effective phosphate adsorbent. The morphology of LDHns-F was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results showed ultrathin LDH nanosheets were successfully synthesized with a lateral size of 30 nm, plate-like morphology and hexagonal shape. The dried LDH nanosheets exhibited the XRD characteristic peak of LDH, and drying will to some extent cause stacking of the nanosheets. The adsorption isotherms showed that the maximum adsorption capacity of LDHns-F3 (the concentration of Mg and Al reactants are 0.08, 0.04 mol·L-1) is 128.0 mg·g-1 by Langmuir fitting, 61% higher than that of conventional layered LDH (LDH-P). The kinetic results showed that LDHns-F3 can quickly adsorb phosphate and reach equilibrium in 15 minutes. The data were well fitted by pseudo second-order model indicated that chemical adsorption may be the rate control step of phosphate adsorption on LDHns-F3.The adsorption mechanism was investigated by Zeta potential analysis and X-ray photoelectron spectroscopy (XPS). The results showed that the hydroxyl groups on the layer surface formed inner-sphere complexes with phosphate. The presence of large amounts of hydroxyl groups on the surface of LDH nanosheets is beneficial for adsorption of oxygen containing anionic pollutants. The LDH nanosheets with good adsorption properties have wide application prospects in high phosphorus containing water treatment.
Key words:adsorbent/
layer double hydroxide/
nanosheets/
phosphate/
water treatment.
[1] | CONLEY D J, PAERL H W, HOWARTH R W, et al.Ecology controlling eutrophication: Nitrogen and phosphorus[J].Science,2009,323(5917):1014-1015 10.1126/science.1167755 |
[2] | EMMANUELAWATI I, YANG J, ZHANG J, et al.Low-cost and large-scale synthesis of functional porous materials for phosphate removal with high performance[J].Nanoscale,2013,5(13):6173-6180 10.1039/c3nr01574b |
[3] | SHANNON M A, BOHN P W, ELIMELECH M, et al.Science and technology for water purification in the coming decades[J].Nature,2008,452(7185):301-310 10.1038/nature06599 |
[4] | TRAN N, DROGUI P, BLAIS J F, et al.Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment[J].Separation & Purification Technology,2012,95:16-25 10.1016/j.seppur.2012.04.014 |
[5] | ZENGIN G E, ARTAN N, ORHON D, et al.Effect of aspartate and glutamate on the fate of enhanced biological phosphorus removal process and microbial community structure[J].Bioresource Technology,2011,102(2):894-903 10.1016/j.biortech. 2010.09.023 |
[6] | GREENLEE L F, TESTA F, LAWLER D F, et al.The effect of antiscalant addition on calcium carbonate precipitation for a simplified synthetic brackish water reverse osmosis concentrate[J].Water Research,2010,44(9):2957-2969 10.1016/j.watres.2010.02.024 |
[7] | LIU Y T, HESTERBERG D.Phosphate bonding on noncrystalline Al/Fe-hydroxide coprecipitates[J].Environmental Science & Technology,2011,45(15):6283-6289 10.1021/es201597j |
[8] | AWUAL M R, JYO A.Assessing of phosphorus removal by polymeric anion exchangers[J].Desalination,2011,281(20):111-117 10.1016/j.desal.2011.07.047 |
[9] | MOHARAMI S, JALALI M.Removal of phosphorus from aqueous solution by Iranian natural adsorbents[J].Chemical Engineering Journal,2013,223:328-339 10.1016/j.cej.2013.02.114 |
[10] | 张多,张盼月,田帅,等. 用于磷吸附的载铁(β-FeOOH)沸石制备及特性[J]. 环境工程学报,2014,8(2):499-504 |
[11] | 施川,张盼月,郭建斌,等. 污泥生物炭的磷吸附特性[J]. 环境工程学报,2016,10(12):7202-7208 10.12030/j.cjee.201508021 |
[12] | 孙德智,黄新瑞,程翔,等.Zn-Al类水滑石吸附污泥脱水液中磷的研究[J]. 北京林业大学学报,2009,31(2):128-132 |
[13] | CAVANI F, TRIFIRO F, VACCARI A.Hydrotalcite-typeanionicclays: Preparation,properties and applications[J].Catalysis Today,1991,11(2):173-301 10.1002/chin.199212317 |
[14] | HIBINO T, KOBAYASHI M.Delamination of layered double hydroxides in water[J].Journal of Materials Chemistry,2005,15(6):653-656 10.1039/b416913a |
[15] | HU G, O'HARE D.Unique layered double hydroxide morphologies using reverse microemulsion synthesis[J].Journal of the American Chemical Society,2005,127(50): 17808-17813 10.1021/ja0549392 |
[16] | CAI P, ZHENG H, WANG C, et al.Competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO3 layered double hydroxides[J].Journal of Hazardous Materials,2012,213–214(2):100-108 10.1016/j.jhazmat.2012.01.069 |
[17] | HE H M, KANG H L, MA S L, et al.High adsorption selectivity of ZnAl layered double hydroxides and the calcined materials toward phosphate[J].Journal of Colloid & Interface Science,2010,343(1):225-231 10.1016/j.jcis.2009.11.004 |
[18] | MA R Z, LIU Z P, LI L, et al.Exfoliating layered double hydroxides in formamide:a method to obtain positively charged nanosheets[J].Journal of Materials Chemistry,2006,16(39):3809-3813 10.1039/B605422F |
[19] | FANG L P, HUANG L Z, HOLM P E, et al.Facile upscaled synthesis of layered iron oxide nanosheets and their application in phosphate removal[J].Journal of Materials Chemistry A,2015,3(14):7505-7512 10.1039/C4TA07083F |
[20] | WERNER S, LAU V W, HUG S, et al.Cationically charged Mn(II)Al(III) LDH nanosheets by chemical exfoliation and their use as building blocks in graphene oxide-based materials[J].Langmuir,2013,29:9199-9207 10.1021/la400846w |
[21] | WU X W, LI H P, SONG S E, et al.Facile synthesis of camptothecin intercalated layered double hydroxide nanohybrids via a co-assembly route[J].International Journal of Pharmaceutics,2013,454(1):453-461 10.1016/j.ijpharm.2013.06.043 |
[22] | ZHAN T R, ZHANG Y M, YANG Q, et al.Ultrathin layered double hydroxide nanosheets prepared from a water-in-ionic liquid surfactant-free microemulsion for phosphate removal from aquatic systems[J].Chemical Engineering Journal,2016,302: 459-465 10.1016/j.cej.2016.05.073 |
[23] | 席欢,何静, EVANS D G, 等. 层板剥离水滑石的制备及其在纳米复合材料中的应用[J]. 无机化学学报,2004,20(10):1217-1222 10.7666/d.y737124 |
[24] | ADACHIPAGANO M, FORANO C, BESSE J P.Delamination of layered double hydroxides by use of surfactants[J].Chemical Communications,2000,1(1):91-92 10.1039/a908251d |
[25] | HU G, WANG N, O'HARE D, et al.One-step synthesis and AFM imaging of hydrophobic LDH monolayers[J].Chemical Communications,2006,3(3):287-289 10.1039/b514368c |
[26] | YU J F, MARTIN B R, CLEARFIELD A, et al.One-step direct synthesis of layered double hydroxide single-layer nanosheets[J].Nanoscale,2015,7(21):9448-9451 10.1039/C5NR01077B |
[27] | WANG Q, O'HARE D.Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J].Chemical Reviews,2012,112(7):4124-4155 10.1021/cr200434v |
[28] | HIBINO T, JONES W.New approach to the delamination of layered double hydroxides[J].Journal of Materials Chemistry,2001,11(5):1321-1323 10.1039/b101135i |
[29] | 贾云生,王火焰,赵雪松,等.CaAl类水滑石的磷酸根吸附性能及其影响因素研究[J]. 化学学报,2015,73(11):1207-1213 10.6023/A15070485 |
[30] | 杨博凯,刘东方,吕建波,等. 新型Zn-Fe-LDH对磷酸盐的吸附与去除机理研究[J]. 水处理技术,2015,41(12):47-51 10.16796/j.cnki.1000-3770.2015.12.011 |
[31] | LONG F, GONG J L, ZENG G M, et al.Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide[J].Chemical Engineering Journal,2011, 171(2):448-455 10.1016/j.cej.2011.03.102 |
[32] | REN Z M, SHAO L, ZHANG G S.Adsorption of phosphate from aqueous solution using an iron–zirconium binary oxide sorbent[J].Water,Air & Soil Pollution,2012,223(7):4221-4231 10.1007/s11270-012-1186-5 |
[33] | SU Y, CUI H,LI Q, et al.Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J].Water Research,2013,47(14):5018-5026 10.1016/j.watres.2013.05.044 |
[34] | LV J B, LIU H J, LIU R P, et al.Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent[J].Powder Technology,2013, 233(1):146-154 10.1016/j.powtec.2012.08.024 |
[35] | LOOKMAN R, GROBET P, MERCKX R, et al.Application of 31P and 27Al MAS NMR for phosphate speciation studies in soil and aluminium hydroxides:Promises and constraints[J].Geoderma,1997,80(3):369-388 10.1016/S0016-7061(97)00061-X |
[36] | CHEUNG K C, VENKITACHALAM T H.Improving phosphate removal of sand infiltration system using alkaline fly ash[J].Chemosphere,2000,41(1/2):243-249 10.1016/S0045-6535(99)00417-8 |
[37] | ROBB M, GREENOP B, GOSS Z, et al.Application of PhoslockTM, an innovative phosphorus binding clay, to two Western Australian waterways:Preliminary findings[J].Hydrobiologia,2003,494(1/2/3):237-243 10.1023/A:1025478618611 |
[38] | ROSS G, HAGHSERESHT F, CLOETE T E.The effect of pH and anoxia on the performance of Phoslock ?:A phosphorus binding clay[J].Harmful Algae,2008,7(4):545-550 10.1016/j.hal.2007.12.007 |
[39] | SPEARS B M, LURLING M, YASSERI S, et al.Lake responses following lanthanum modified bentonite clay (Phoslock) application: An analysis of water column lanthanum data from 16 case study lakes[J].Water Research,2013,47(15): 5930-5942 10.1016/j.watres.2013.07.016 |
[40] | XU R, ZHANG M Y, MORTIMER R J, et al.Enhanced phosphorus locking by novel Lanthanum/Aluminumhydroxide composite:Implications for eutrophication control[J].Environmental Science & Technology,2017,51(6):3418-3425 10.1021/acs.est.6b05623 |
[41] | XU Y F, DAI Y C, ZHOU J Z, et al.Removal efficiency of arsenate and phosphate from aqueous solution using layered double hydroxide materials:Intercalation vs.precipitation[J].Journal of Materials Chemistry,2010,20(22): 4684-4691 10.1039/B926239C |
[42] | CHOW L C.Development of self-settingcalcium phosphate cements[J].Journal of the Ceramic Society of Japan,1991,99(10):954-964 |
[43] | ZHANG G S, LIU H J, LIU R P, et al.Removal of phosphate from water by a Fe-Mn binary oxide adsorbent[J].Journal of Colloid and Interface Science,2009, 335(2):168-174 10.1016/j.jcis.2009.03.019 |
[44] | 高思佳,王昌辉,裴元生.pH对活化前后废弃铁铝泥吸附不同种磷动力学的影响[J]. 环境工程学报,2013,7(9):3263-3269 |
[45] | KOILRAJ P, ANTONYRAJ C A, GUPTA V,et al.Novel approach for selective phosphate removal using colloidal layered double hydroxide nanosheets and use of residue as fertilizer[J].Applied Clay Science,2013,86(8):111-118 10.1016/j.clay.2013.07.004 |
[46] | WU K, LIU T, MA C, et al.The role of Mn oxide doping in phosphate removal by Al-based bimetal oxides: Adsorption behaviors and mechanisms[J].Environmental Science and Pollution Research,2014,21(1):620-630 10.1007/s11356-013-1937-x |
[47] | ZENG L, LI X M, LIU J D.Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings[J].Water Research,2004,38(5):1318-1326 10.1016/j.watres.2003.12.009 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1417
HTML全文浏览数:1222
PDF下载数:143
施引文献:0
出版历程
刊出日期:2018-09-20
-->
超薄水滑石纳米片除磷效果与机理
刘晨1,2,,张美一1,
潘纲1,3
1.中国科学院生态环境研究中心,环境纳米技术与健康效应重点实验室,北京 100085
2.中国科学院大学,北京 100049
3.诺丁汉特伦特大学动物、乡村与环境科学学院,诺丁汉 NG250QF
基金项目: 国家自然科学基金资助项目(21377003) 中国科学院先导项目(XDA09030203) 国家重点基础研究发展计划项目(2017YFA0207204) 北京市自然科学基金资助项目(8162040)
关键词: 吸附剂/
水滑石/
纳米片/
磷酸根/
水处理
摘要:为了开发一种新型高效的除磷吸附剂,通过甲酰胺一步合成法制备了不同镁铝反应物浓度的水滑石纳米片(LDHns-F1~4),并利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)等技术对LDHns-F的形貌进行了表征。结果表明,该方法成功合成了超薄水滑石纳米片,横向尺寸约30 nm,呈板状形貌和六角形微晶的特点。冷干后的水滑石纳米片具有水滑石XRD特征峰,干燥过程会造成纳米片的部分堆叠。等温吸附实验结果表明,纳米片LDHns-F3(镁铝反应物摩尔浓度为0.08、0.04 mol·L-1)对磷酸盐的饱和最大吸附量为128.0 mg·g-1, 固磷能力比层状水滑石LDH-P提高61%。吸附反应在15 min后达到平衡,吸附动力学符合伪二级动力学方程,表明化学吸附可能是LDHns-F3吸附磷酸根的速率控制步骤。通过Zeta电位和X射线光电子能谱(XPS)对吸附机制进行分析,结果表明磷酸盐在水滑石纳米片层板表面通过羟基络合形成了内层络合物。水滑石纳米片层表面存在的大量羟基使其对含氧阴离子型污染物具有良好的吸附性能,在高浓度含磷水体处理中具有广阔的应用前景。
English Abstract
Efficiency and mechanism of phosphate removal by ultrathin layered double hydroxide nanosheets
LIU Chen1,2,,ZHANG Meiyi1,
PAN Gang1,3
1.Key Laboratory of Environmental Nano-Technology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG250QF, England
Keywords: adsorbent/
layer double hydroxide/
nanosheets/
phosphate/
water treatment
Abstract:Layered double hydroxide (LDH) nanosheets were prepared in formamide by a one-step synthesis method with different concentrations of magnesium (Mg) and aluminum (Al) reactants (LDHns-F1~4), with the aim to produce an effective phosphate adsorbent. The morphology of LDHns-F was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results showed ultrathin LDH nanosheets were successfully synthesized with a lateral size of 30 nm, plate-like morphology and hexagonal shape. The dried LDH nanosheets exhibited the XRD characteristic peak of LDH, and drying will to some extent cause stacking of the nanosheets. The adsorption isotherms showed that the maximum adsorption capacity of LDHns-F3 (the concentration of Mg and Al reactants are 0.08, 0.04 mol·L-1) is 128.0 mg·g-1 by Langmuir fitting, 61% higher than that of conventional layered LDH (LDH-P). The kinetic results showed that LDHns-F3 can quickly adsorb phosphate and reach equilibrium in 15 minutes. The data were well fitted by pseudo second-order model indicated that chemical adsorption may be the rate control step of phosphate adsorption on LDHns-F3.The adsorption mechanism was investigated by Zeta potential analysis and X-ray photoelectron spectroscopy (XPS). The results showed that the hydroxyl groups on the layer surface formed inner-sphere complexes with phosphate. The presence of large amounts of hydroxyl groups on the surface of LDH nanosheets is beneficial for adsorption of oxygen containing anionic pollutants. The LDH nanosheets with good adsorption properties have wide application prospects in high phosphorus containing water treatment.