刘俊峰1,
黄琳琳1,
郭嘉钰1,
冯玉杰1,
LOGANBruce1,2
1.哈尔滨工业大学环境学院,城市水资源与水环境国家重点实验室,哈尔滨 150090
2.宾夕法尼亚州立大学土木与环境工程系,美国宾夕法尼亚州 16802
基金项目: 城市水资源与水环境国家重点实验室(哈尔滨工业大学)自主课题(2018DX01)
黑龙江省科技攻关项目(WB10A401)
Preparation, structure and performance of nano-scale Nd doped SnO2-Sb electrode based on TiO2 nanotubes
YANG Lisha1,,LIU Junfeng1,
HUANG Linlin1,
GUO Jiayu1,
FENG Yujie1,
LOGAN Bruce1,2
1.State Key Laboratory of Urban Water Resource & Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
2.Department of Civil and Environmental Engineering, Pennsylvania State University, Pennsylvania State 16802, The United States of America
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:采用溶剂热法制备了稀土Nd掺杂TiO2-NTs/SnO2-Sb电极,以苯酚作为典型有机物,考察了电极组成、结构与电极电催化效能的关系,实验结果表明,Nd的掺杂量对电极电催化性能有较大的影响,当前驱液中Nd/Sn原子摩尔百分比为3%时,电极的电催化活性最佳,对苯酚浓度及TOC的降解速率较空白电极(Nd0%)提高了60%及52%。利用SEM及XRD分析方法对所制备的电极进行了形貌及晶形结构的表征,并计算了电极表面SnO2晶胞参数以及平均粒径,结果显示,适量地掺杂Nd元素后,电极表面更加致密,SnO2平均粒径变小。通过XPS分析电极表面元素组成,并计算电极表面吸附氧含量,结果表明,由于Nd元素的存在,降低了涂层中晶格氧(Olat)的含量,减弱了电子的吸引作用,促使了Sn4+周围电子云密度升高,从而电极表面Sn元素特征衍射峰表现为向低结合能方向偏移。与空白电极(Nd0%)相比,改性后的电极(Nd3%)涂层表面Sb含量下降,且吸附氧(Oads)含量上升,为空白电极的1.6倍。EPR测试结果进一步证实了改性后电极性能提高的机制,Nd元素的引入,增加了电极涂层表面氧空位的浓度,使得电极涂层表面各元素的化学环境发生改变。掺杂改性后,电极的析氧电位以及产羟基自由基能力均得以提升,从而促使电极催化活性大大增强。
关键词: TiO2-NTs/SnO2-Sb 电极/
Nd掺杂/
氧空位/
电催化氧化
Abstract:Nd-doped TiO2-NTs/SnO2-Sb electrode was successfully fabricated by solvothermal synthesis approach. Phenol degradation test showed that the electrocatalytic property was affected by Nd doping content. Compare with the control electrode, the degradation rate of phenol and TOC were increased 60% and 52% on the one with Nd3%. The morphology and crystals structure of the catalytic coating were determined through SEM and XRD, the results showed that an optimum Nd content level could gain a denser surface structure and a smaller grain size than the control sample. The analysis of XPS indicated that introducing Nd could reduce the lattice oxygen (Olat), which was testified from the fact of lower banding energy of Sn displayed on Nd(3%)-doped electrode. In addition, the Sb on the electrode (Nd3%) surface reduced, and the adsorbed oxygen species (Oads) increased, which was 1.6 times as much as that on the control. The results from EPR further verified the mechanism of performance enhancement, introducing Nd could increase the concentration of oxygen vacancy and thus change chemical environment of the each element on the electrode surface, which greatly raised the oxygen evolution potential and strengthened the generation ability of ·OH to destroy organic matters.
Key words:TiO2-NTs/SnO2-Sb electrode/
Nd doping/
oxygen vacancy/
electrocatalytic oxidation.
[1] | FENG Y J, LI X.Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J].Water Research, 2003, 37(10): 2399-2407 10.1016/S0043-1354(03)00026-5 |
[2] | LI X Y, CUI Y H, FENG Y J, et al.Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes[J].Water Research, 2005, 39(10): 1972-1981 10.1016/j.watres.2005.02.021 |
[3] | FENG Y J, YANG L S, LIU J F, et al.Electrochemical technologies for wastewater treatment and resource reclamation[J].Environmental Science: Water Research & Technology, 2016, 2(5): 800-831 10.1039/C5EW00289C |
[4] | SIMOND O, SCHALLER V, COMNINELLIS C.Theoretical model for the anodic oxidation of organics on metal oxide electrodes[J].Electrochimica Acta, 1997, 42 (13/14): 2009-2012 10.1016/S0013-4686(97)85475-8 |
[5] | 胡承志,刘会娟,曲久辉.电化学水处理技术研究进展[J].环境工程学报,2018,12(3):677-696 10.12030/j.cjee.201801179 |
[6] | 孙天宇,朱兆连,牛荘,等.低浓度三氯生废水的电化学去除效能[J].环境工程学报,2018,12(3):824-829 10.12030/j.cjee.201707239 |
[7] | XU H, ZHANG Q, YAN W, et al.A composite Sb-doped SnO2 electrode based on the TiO2 nanotubes prepared by hydrothermal synthesis[J].International Journal of Electrochemical Science, 2011, 6(12): 6639-6652 |
[8] | YANG L S, LIU J F, HUANG L L, et al.Fabrication of nano-structured stacked sphere SnO2-Sb electrode with enhanced performance using a situ solvothermal synthesis method[J].Journal of the Electrochemical Society, 2018,165:E1-E6 10.1149/2.0711805jes |
[9] | ZHAO G, CUI X, LIU M, et al.Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/Sb-doped SnO2 electrode[J].Environmental Science & Technology, 2009, 43(5): 1480-1486 10.1021/es802155p@proofing |
[10] | CHEN G, CHEN X, YUE P.Electrochemical behavior of novel Ti/IrOx-Sb2O5-SnO2 anodes[J].Journal of Physical Chemistry B, 2002, 106(17): 4364-4369 10.1021/jp013547o |
[11] | ZHANG L C, XU L, HE J, et al.Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration[J].Electrochimica Acta, 2014, 117(4):192-201 10.1016/j.electacta.2013.11.117 |
[12] | 冯玉杰, 崔玉虹, 王建军.Dy改性SnO2-Sb电催化电极的制备及表征[J]. 无机化学学报, 2005,21(6):836-841 |
[13] | YANG S Y, CHOO Y S, KIM S, et al.Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals[J].Applied Catalysis B: Environmental, 2012,111(12): 317-325 10.1016/j.apcatb.2011.10.014 |
[14] | HU F P, DONG Z Q, CUI X W, et al.Improved SnO2-Sb2O4 based anode modified with Cr3C2 and CNT for phenol oxidation[J].Electrochimica Acta, 2011,56(3): 1576-1580 10.1016/j.electacta.2010.10.037 |
[15] | CUI Y H, FENG Y J, LIU Z Q.Influence of rare earths doping on the structure and electro-catalytic performance of Ti/Sb-SnO2 electrodes[J].Electrochimica Acta, 2009, 54(21): 4903-4909 10.1016/j.electacta.2009.04.041 |
[16] | FENG Y J, CUI Y H, LOGAN B E, et al.Performance of Gd-doped Ti-based Sb-SnO2 anodes for electrochemical destruction of phenol[J].Chemosphere,2008,70(9):1629-1636 10.1016/j.chemosphere.2007.07.083 |
[17] | FENG Y J, CUI Y H, LIU J F, et al.Factors affecting the electro-catalytic characteristics of Eu doped SnO2/Sb electrode[J].Journal of Hazardous Materials,2010,178(1):29-34 10.1016/j.jhazmat.2009.12.101 |
[18] | 崔玉虹,刘正乾,刘志刚,等.Ce掺杂钛基二氧化锡电极的制备及电催化性能研究[J].功能材料,2004,35(z1):2035-2039 |
[19] | COMNINELLIS C, PULGARIN C.Anodic oxidation of phenol for wastewater treatment[J].Journal of Applied Electrochemistry, 1991,21(8):703-708 10.1002/cjce.5450590106 |
[20] | GUO Y, DUAN T G, CHENY,et al.Solvothermal fabrication of three-dimensionally sphere-stacking Sb-SnO2 electrode based on TiO2 nanotube arrays[J].Ceramics International,2015,41(7):8723-8729 |
[21] | 刘峻峰.钛基Sb掺杂SnO2纳米涂层电极的制备及性能研究[D].哈尔滨:哈尔滨工业大学, 2008 |
[22] | 刘峻峰,冯玉杰, 孙丽欣,等.钛基SnO2纳米涂层电催化电极的制备及性能研究[J].材料科学与工艺, 2006,14(2): 200-203 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1337
HTML全文浏览数:1026
PDF下载数:160
施引文献:0
出版历程
刊出日期:2018-08-17
-->
稀土Nd改性纳米TiO2-NTs/SnO2-Sb电极的制备、结构及性能
杨莉莎1,,刘俊峰1,
黄琳琳1,
郭嘉钰1,
冯玉杰1,
LOGANBruce1,2
1.哈尔滨工业大学环境学院,城市水资源与水环境国家重点实验室,哈尔滨 150090
2.宾夕法尼亚州立大学土木与环境工程系,美国宾夕法尼亚州 16802
基金项目: 城市水资源与水环境国家重点实验室(哈尔滨工业大学)自主课题(2018DX01) 黑龙江省科技攻关项目(WB10A401)
关键词: TiO2-NTs/SnO2-Sb 电极/
Nd掺杂/
氧空位/
电催化氧化
摘要:采用溶剂热法制备了稀土Nd掺杂TiO2-NTs/SnO2-Sb电极,以苯酚作为典型有机物,考察了电极组成、结构与电极电催化效能的关系,实验结果表明,Nd的掺杂量对电极电催化性能有较大的影响,当前驱液中Nd/Sn原子摩尔百分比为3%时,电极的电催化活性最佳,对苯酚浓度及TOC的降解速率较空白电极(Nd0%)提高了60%及52%。利用SEM及XRD分析方法对所制备的电极进行了形貌及晶形结构的表征,并计算了电极表面SnO2晶胞参数以及平均粒径,结果显示,适量地掺杂Nd元素后,电极表面更加致密,SnO2平均粒径变小。通过XPS分析电极表面元素组成,并计算电极表面吸附氧含量,结果表明,由于Nd元素的存在,降低了涂层中晶格氧(Olat)的含量,减弱了电子的吸引作用,促使了Sn4+周围电子云密度升高,从而电极表面Sn元素特征衍射峰表现为向低结合能方向偏移。与空白电极(Nd0%)相比,改性后的电极(Nd3%)涂层表面Sb含量下降,且吸附氧(Oads)含量上升,为空白电极的1.6倍。EPR测试结果进一步证实了改性后电极性能提高的机制,Nd元素的引入,增加了电极涂层表面氧空位的浓度,使得电极涂层表面各元素的化学环境发生改变。掺杂改性后,电极的析氧电位以及产羟基自由基能力均得以提升,从而促使电极催化活性大大增强。
English Abstract
Preparation, structure and performance of nano-scale Nd doped SnO2-Sb electrode based on TiO2 nanotubes
YANG Lisha1,,LIU Junfeng1,
HUANG Linlin1,
GUO Jiayu1,
FENG Yujie1,
LOGAN Bruce1,2
1.State Key Laboratory of Urban Water Resource & Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
2.Department of Civil and Environmental Engineering, Pennsylvania State University, Pennsylvania State 16802, The United States of America
Keywords: TiO2-NTs/SnO2-Sb electrode/
Nd doping/
oxygen vacancy/
electrocatalytic oxidation
Abstract:Nd-doped TiO2-NTs/SnO2-Sb electrode was successfully fabricated by solvothermal synthesis approach. Phenol degradation test showed that the electrocatalytic property was affected by Nd doping content. Compare with the control electrode, the degradation rate of phenol and TOC were increased 60% and 52% on the one with Nd3%. The morphology and crystals structure of the catalytic coating were determined through SEM and XRD, the results showed that an optimum Nd content level could gain a denser surface structure and a smaller grain size than the control sample. The analysis of XPS indicated that introducing Nd could reduce the lattice oxygen (Olat), which was testified from the fact of lower banding energy of Sn displayed on Nd(3%)-doped electrode. In addition, the Sb on the electrode (Nd3%) surface reduced, and the adsorbed oxygen species (Oads) increased, which was 1.6 times as much as that on the control. The results from EPR further verified the mechanism of performance enhancement, introducing Nd could increase the concentration of oxygen vacancy and thus change chemical environment of the each element on the electrode surface, which greatly raised the oxygen evolution potential and strengthened the generation ability of ·OH to destroy organic matters.