吕建波1,2,
李莞璐1,
孙力平1,2,
王少坡1,2,
程方1,2
1.天津城建大学环境与市政工程学院,天津 300384
2.天津市水质科学与技术重点实验室,天津 300384
基金项目: 国家自然科学基金资助项目(51478292)
天津市自然科学基金资助项目 (12JCYBJC14800)
天津市水质科学与技术重点实验室开放基金资助项目(TJKLAST-PT-2016-05)
国家水体污染控制与治理科技重大专项 (2017ZX07107-002-4)
Adsorption of phosphate by nano akaganeite impregnated chitosan
YANG Jinmei1,2,,LYU Jianbo1,2,
LI Wanlu1,
SUN Liping1,2,
WANG Shaopo1,2,
CHENG Fang1,2
1.School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjing 300384, China
2.Key Laboratory of Water Quality Science and Technology, Tianjing 300384, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:低浓度的磷在污水处理中较难去除,排放至水体会造成水体富营养化。采用溶胶-凝胶法,以壳聚糖和FeCl3·6H2O为原料,通过原位水解-浸渍法制备出壳聚糖载纳米羟基氧化铁(CNFeOOH),对其进行了场发射透射电镜(HRTEM)、比表面积和孔径、X射线衍射仪(XRD)分析的表征。结果表明,CNFeOOH中含有类似正方针铁矿(β-FeOOH)的晶体结构,呈纳米棒状分布,长约10 nm,宽约2~3 nm,比表面积为76.240 m2·g-1。磷吸附实验结果表明:Freundlich吸附等温式能更好地描述CNFeOOH对磷的吸附特征,其实际最大吸附量为24.50 mg·g-1(pH=6,T=(20±1)℃);动力学吸附平衡时间约为24 h,其吸附过程符合准二级动力学模式和颗粒内扩散模式,证明吸附过程中同时发生了物理吸附和化学吸附;溶液的pH对CNFeOOH吸附磷的影响较为明显,随pH升高,吸附量降低;离子强度(0.01~0.5 mol·L-1)则影响不大;共存阴离子(SO42- 、NO3- 、HCO3-)对磷的吸附影响较小。因此,推断CNFeOOH对磷的吸附机理是以静电引力和配位作用为主的特性吸附。
关键词: 低浓度的磷/
壳聚糖载纳米羟基氧化铁/
棒状/
吸附
Abstract:Low-concentration phosphate is difficult to be removed during wastewater treatment process, whose excessive discharge into surface water could cause eutrophication. A novel sorbent of rod-like nano akaganeite impregnated chitosan (CNFeOOH) was fabricated via in-situ hydrolysis and impregnation technique using FeCl3·6H2O and chitosan in this study. The sorbent was characterized using multiple techniques and its performance for phosphate (PO43-) removal from aqueous solution was investigated. Analyses including high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET) surface area and pore size distribution , X-ray diffraction (XRD) confirmed the structural characteristics of the sorbent. Above results indicated that the iron oxide particles in CNFeOOH is nano akaganeite (β-FeOOH) , whose shape was rod-like with a length of about 10 nm and a width of about 2 to 3 nm. The specific surface area of CNFeOOH was about 76.240 m2·g-1. The data obtained from batch experiments could be well described using Freundlich isotherm model. Meanwhile, the maximum adsorption capacity was 24.50 mg·g-1 when the solution pH was 6 at room temperature. CNFeOOH had a high adsorption rate towards phosphate, which was fitted better with the pseudo-second-order kinetics model. The sorption of phosphate on CNFeOOH was strongly dependent on pH, whereas its sorption was weakly dependent on ionic strength and coexisting SO42-, NO3- and HCO3-. It can be inferred from above analyses that phosphate adsorption mechanism on the CNFeOOH surface was dominated by electrostatic attraction and ligand exchange.
Key words:low-concentration phosphate/
nano akaganeite impregnated in chitosan/
rod/
adsorption.
[1] | CONLEY D J, PAERL H W, HOWARTH R W, et al.Controlling eutrophication: Nitrogen and phosphorus[J].Science,2009,323(5917):1014–1015 10.1126/science.1167755 |
[2] | PAN B, WU J, PAN B, et al.Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents[J].Water Research,2009,43(17):4421–4429 10.1016/j.watres.2009.06.055 |
[3] | LU S G, BAI S Q, ZHU L, et al.Removal mechanism of phosphate from aqueous solution by fly ash[J].Journal of Hazardous Materials,2009,161(1):95-101 10.1016/j.jhazmat.2008.02.123 |
[4] | YE J, CONG X, ZHANG P, et al.Preparation of a new granular acid-activated neutralized red mud and evaluation of its performance for phosphate adsorption[J].ACS Sustainable Chemistry & Engineering,2015,3(12):3324–3331 10.1021/acssuschemeng.5b00932 |
[5] | ZENG L, LI X, LIU J.Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings[J].Water Research,2004,38(5):1318–1326 10.1016/j.watres.2003.12.009 |
[6] | ZENG H, FISHER B, GIAMMAR D E.Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent[J].Environmental Science & Technology,2008,42(1):147–152 10.1021/es071553d |
[7] | WU K, LIU T, MA C, et al.The role of Mn oxide doping in phosphate removal by Al-based bimetal oxides: Adsorption behaviors and mechanisms[J].Environmental Science & Pollution Research International,2014,21(1):620–630 10.1007/s11356-013-1937-x |
[8] | 李海宁, 陈静, 李秋梅,等. 铁锰复合氧化物包覆海砂的吸附除磷研究[J]. 环境科学学报, 2016,36(3):880–886 10.13671/j.hjkxxb.2015.0458 |
[9] | SAHARAN P, CHAUDHARY G R, MEHTA S K, et al.Removal of water contaminants by iron oxide nanomaterials[J].Journal of Nanoscience & Nanotechnology,2014,14(1):627–643 10.1166/jnn.2014.9053 |
[10] | LIU C, BAI R.Recent advances in chitosan and its derivatives as adsorbents for removal of pollutants from water and wastewater[J].Current Opinion in Chemical Engineering,2014,4:62–70 10.1016/j.coche.2014.01.004 |
[11] | HE J, BARDELLI F, GEHIN A, et al.Novel chitosan goethite bionanocomposite beads for arsenic remediation[J].Water Research,2016,101:1–9 10.1016/j.watres.2016.05.032 |
[12] | YAMAIN J S, LOUNSBURY A W, ZIMMERMAN J B.Adsorption of selenite and selenate by nanocrystalline aluminum oxide, neat and impregnated in chitosan beads[J].Water Research,2014,50(3):373–381 10.1016/j.watres.2013.10.054 |
[13] | JIANG H, CHEN P, LUO S, et al.Synthesis of novel biocompatible composite Fe3O4/ZrO2/chitosan and its application for dye removal[J].Journal of Inorganic & Organometallic Polymers & Materials,2013,23(2):393–400 10.1007/s10904-012-9792-7 |
[14] | 闵伶俐, 郑煜铭, 钟鹭斌,等. 铁氧化物/壳聚糖复合纳米纤维的制备及吸附五价砷研究[J]. 环境科学学报,2014,34(12):2979–2984 10.13671/j.hjkxxb.2014.0688 |
[15] | SOWMYA A, MEENAKSHI S.Zr(IV) loaded cross-linked chitosan beads with enhanced surface area for the removal of nitrate and phosphate[J].International Journal of Biological Macromolecules,2014,69(8):336–343 10.1016/j.ijbiomac.2014.05.043 |
[16] | LAGERGREEN S.Zur theorie der sogenannten adsorption gel?ster stoffe[J].Zeitschrift Für Chemie Und Industrie Der Kolloide,1907,2(1):15 |
[17] | HO Y S, MCKAY G, WASE D A J, et al.Study of the sorption of divalent metal ions on to peat[J].Adsorption Science & Technology,2000,18(7):639–650 10.1260/0263617001493693 |
[18] | CHIEN S H, CLAYTON W R.Application of Elovich equation to the kinetics of phosphate release and sorption in soils[J].Soil Science Society of America Journal,1980, 44(2):265–268 10.2136/sssaj1980.03615995004400020013x |
[19] | WEBER W J, MORRIS J C.Kinetics of adsorption on carbon from solution[J].Asce Sanitary Engineering Division Journal,1963,1(2):1–2 |
[20] | 王永亮. 壳聚糖水凝胶诱导合成纳米Fe3O4及同心层状磁性水凝胶构建[D]. 哈尔滨:哈尔滨工业大学, 2011 |
[21] | MOHAPATRA M, HARIPRASAD D, MOHAPATRA L, et al.Mg-doped nano ferrihydrite:A new adsorbent for fluoride removal from aqueous solutions[J].Applied Surface Science,2012,258(10):4228–4236 10.1016/j.apsusc.2011.12.047 |
[22] | 付军, 范芳, 李海宁,等. 铁锰复合氧化物/壳聚糖珠:一种环境友好型除磷吸附剂[J]. 环境科学, 2016,137(12):4882–4890 10.13227/j.hjkx.201608168 |
[23] | 丁伟, 巴图其木格, 张玲玲,等. 自燃煤矸石吸附磷的动力学和热力学[J]. 环境工程学报, 2017,11(7):4059–4066 10.12030/j.cjee.201604165 |
[24] | OLIVEIRA M, ARAUJO A, AZEVEDO G, et al.Kinetic and equilibrium studies of phosphorous adsorption: Effect of physical and chemical properties of adsorption agent[J].Ecological Engineering,2015,82:527–530 10.1016/j.ecoleng.2015.05.020 |
[25] | 程翔.类水滑石吸附和蓝铁石沉淀回收污水中磷的研究[D].哈尔滨:哈尔滨工业大学,2010 |
[26] | CHEUNG W H, SZETO Y S, MCKAY G.Intraparticle diffusion processes during acid dye adsorption onto chitosan[J].Bioresource Technology,2007,98(15):2897–2904 10.1016/j.biortech.2006.09.045 |
[27] | TIAN S, JIANG P, PING N, et al.Enhanced adsorption removal of phosphate from water by mixed lanthanum/aluminum pillared montmorillonite[J].Chemical Engineering Journal,2009,151(1/2/3):141–148 10.1016/j.cej.2009.02.006 |
[28] | BISWAS B K, INOUE K, GHIMIRE K N, et al.The adsorption of phosphate from an aquatic environment using metal-loaded orange waste[J].Journal of Colloid and Interface Science,2007,312(2):214–223 10.1016/j.jcis.2007.03.072 |
[29] | 王慧. 铁氧化物及其胡敏酸复合体对磷酸盐的吸附研究[D]. 武汉:华中农业大学, 2015 10.7666/d.Y2803159 |
[30] | 周宏光. 载纳米水合氧化铁复合半焦的研制及其除磷性能研究[D]. 重庆:西南大学, 2014 |
[31] | 黄微雅. 功能化改性无机除磷吸附剂的制备及吸附性能研究[D]. 广州:暨南大学, 2013 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1539
HTML全文浏览数:738
PDF下载数:406
施引文献:0
出版历程
刊出日期:2018-05-19
-->
壳聚糖载纳米羟基氧化铁对水中磷的吸附
杨金梅1,2,,吕建波1,2,
李莞璐1,
孙力平1,2,
王少坡1,2,
程方1,2
1.天津城建大学环境与市政工程学院,天津 300384
2.天津市水质科学与技术重点实验室,天津 300384
基金项目: 国家自然科学基金资助项目(51478292) 天津市自然科学基金资助项目 (12JCYBJC14800) 天津市水质科学与技术重点实验室开放基金资助项目(TJKLAST-PT-2016-05) 国家水体污染控制与治理科技重大专项 (2017ZX07107-002-4)
关键词: 低浓度的磷/
壳聚糖载纳米羟基氧化铁/
棒状/
吸附
摘要:低浓度的磷在污水处理中较难去除,排放至水体会造成水体富营养化。采用溶胶-凝胶法,以壳聚糖和FeCl3·6H2O为原料,通过原位水解-浸渍法制备出壳聚糖载纳米羟基氧化铁(CNFeOOH),对其进行了场发射透射电镜(HRTEM)、比表面积和孔径、X射线衍射仪(XRD)分析的表征。结果表明,CNFeOOH中含有类似正方针铁矿(β-FeOOH)的晶体结构,呈纳米棒状分布,长约10 nm,宽约2~3 nm,比表面积为76.240 m2·g-1。磷吸附实验结果表明:Freundlich吸附等温式能更好地描述CNFeOOH对磷的吸附特征,其实际最大吸附量为24.50 mg·g-1(pH=6,T=(20±1)℃);动力学吸附平衡时间约为24 h,其吸附过程符合准二级动力学模式和颗粒内扩散模式,证明吸附过程中同时发生了物理吸附和化学吸附;溶液的pH对CNFeOOH吸附磷的影响较为明显,随pH升高,吸附量降低;离子强度(0.01~0.5 mol·L-1)则影响不大;共存阴离子(SO42- 、NO3- 、HCO3-)对磷的吸附影响较小。因此,推断CNFeOOH对磷的吸附机理是以静电引力和配位作用为主的特性吸附。
English Abstract
Adsorption of phosphate by nano akaganeite impregnated chitosan
YANG Jinmei1,2,,LYU Jianbo1,2,
LI Wanlu1,
SUN Liping1,2,
WANG Shaopo1,2,
CHENG Fang1,2
1.School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjing 300384, China
2.Key Laboratory of Water Quality Science and Technology, Tianjing 300384, China
Keywords: low-concentration phosphate/
nano akaganeite impregnated in chitosan/
rod/
adsorption
Abstract:Low-concentration phosphate is difficult to be removed during wastewater treatment process, whose excessive discharge into surface water could cause eutrophication. A novel sorbent of rod-like nano akaganeite impregnated chitosan (CNFeOOH) was fabricated via in-situ hydrolysis and impregnation technique using FeCl3·6H2O and chitosan in this study. The sorbent was characterized using multiple techniques and its performance for phosphate (PO43-) removal from aqueous solution was investigated. Analyses including high resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET) surface area and pore size distribution , X-ray diffraction (XRD) confirmed the structural characteristics of the sorbent. Above results indicated that the iron oxide particles in CNFeOOH is nano akaganeite (β-FeOOH) , whose shape was rod-like with a length of about 10 nm and a width of about 2 to 3 nm. The specific surface area of CNFeOOH was about 76.240 m2·g-1. The data obtained from batch experiments could be well described using Freundlich isotherm model. Meanwhile, the maximum adsorption capacity was 24.50 mg·g-1 when the solution pH was 6 at room temperature. CNFeOOH had a high adsorption rate towards phosphate, which was fitted better with the pseudo-second-order kinetics model. The sorption of phosphate on CNFeOOH was strongly dependent on pH, whereas its sorption was weakly dependent on ionic strength and coexisting SO42-, NO3- and HCO3-. It can be inferred from above analyses that phosphate adsorption mechanism on the CNFeOOH surface was dominated by electrostatic attraction and ligand exchange.