李想1,
李祖然2,
祖艳群1,
湛方栋1,
秦丽1,
李博1
1.云南农业大学资源与环境学院,昆明 650201
2.云南农业大学园林园艺学院,昆明 650201
基金项目: 国家自然科学基金资助项目(41761073)
云南农业大学自然科学青年基金资助项目(2015ZR06)
云南省农田无公害生产创新团队资助项目(2017HC015)
Effects of intercropping of Arabis alpina L. var.parviflora Franch and Zea mays L. on chemical speciation and accumulation characteristics of Pb
WANG Jixiu1,,LI Xiang1,
LI Zuran2,
ZU Yanqun1,
ZHAN Fangdong1,
QIN Li1,
LI Bo1
1.College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
2.College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:间作植物根与根之间的相互作用影响根际土壤理化性质。目前关于超富集植物与作物间作根际土壤pH是否引起Pb赋存形态的变化,不同赋存形态与超富集植物和作物富集Pb的差异机理尚不清楚。设置不同Pb处理浓度,小花南芥和玉米间作、单作为对照的土培实验。随着Pb处理浓度增加,间作小花南芥生物量显著增加,范围为19.00%~181.08%,Pb富集系数为2.78,显著增加74.02%,转运系数为1.46,变化不显著,其中Pb含量显著增加25%。Pb赋存形态主要以难溶态果酸盐、蛋白质和磷酸盐结合态存在,约占总量的50%,间作显著降低小花南芥根际土壤溶液、根和茎叶中的pH;间作玉米生物量随着Pb处理浓度先显著增加后降低,增加范围为18.59%~49.48%,Pb富集系数平均为0.53,显著降低34.57%,转运系数平均为0.56,显著降低12.51%,Pb赋存形态以草酸盐结合态存在,约占30%,间作显著增加玉米根际土壤溶液、根和茎叶中的pH。揭示间作改变2种植物根际土壤溶液、根和茎叶中pH,从而引起Pb化学形态不同,这是导致超富集植物小花南芥吸收富集Pb,降低玉米体内Pb的主要原因。
关键词: 间作/
铅/
富集/
化学形态/
污染土壤/
转运
Abstract:The interaction between roots of intercropping plants affects the physicochemical properties of rhizosphere soil. At present, whether the pH in rhizosphere soil of hyperaccumulator and crop intercropping triggers the change of Pb occurrence pattern, the difference mechanisms between occurrence patterns and Pb accumulation of hyperaccumulator and crop remain unknown. In this study, different Pb treatment concentrations, A. alpina and maize intercropping were set, soil monoculture was taken as control group of soil culture experiment. The results indicated that with the increase of Pb treatment concentrations, the significant increase range of biomass of intercropped A. alpine was 19.00%~181.08%, Pb enrichment coefficient was 2.78, significantly increasing by 74.02%, transport coefficient was 1.46 with no significant change, and Pb content significantly increased by 25%. The Pb occurrence patterns mainly existed in the form of insoluble fruit acid salt, and combined state of protein and phosphate, accounting for approximately 50% of the total Pb amount, intercropping significantly reduced the pH value of rhizosphere soil solution, root and stem of intercropped A. alpina. The biomass of intercropped maize increased first and then decreased, with significant increase range of 18.59%~49.48%. The Pb enrichment coefficient and transport coefficient decreased significantly. The former was 0.53 in average, remarkably decreasing by 34.57%, the latter was 0.56 in average, remarkably decreasing by 12.51%, the Pb occurrence pattern existed in the form of oxalate, which accounts for 30% of the total Pb amount in intercropped maize. Intercropping significantly raised the pH of rhizosphere soil solution, and the root and stem of intercropped maize. This study reveals that the hyperaccumulator A. alpine absorbs and accumulates Pb, and the reduction of Pb within maize is due to intercropping, which changes the pH of rhizosphere soil solution, and root and stem of two plants, resulting in difference chemical forms of Pb.
Key words:intercropping/
lead/
accumulation/
chemical speciation/
contaminated soil/
transport.
[1] | 沈虹. 萝卜铅累积与化学形态分布及超微结构的定位[D]. 南京:南京农业大学,2014 |
[2] | 许嘉琳,鲍子平,杨居荣,等. 农作物体内铅、镉、铜的化学形态研究内[J]. 应用生态学报,1991,2(3):244-248 |
[3] | 徐劼,于明革,陈英旭,等. 铅在茶树体内的分布及化学形态特征[J]. 应用生态学报,2011,22(4):891-896 |
[4] | SHAHID M, PINELLI E, DUMAT C.Review of Pb availability and toxicity to plants in relation with metal speciation: Role of synthetic and natural organic ligands[J].Journal of Hazardous Materials,2012,219-220:1-12 10.1016/j.jhazmat.2012.01.060 |
[5] | FU X P, DON C M, CHEN Y X, et al.Subcellular distribution and chemical forms of cadmium in Phytolacca Americana L [J].Journal of Hazardous Materials,2011,186:103-107 10.1016/j.jhazmat.2010.10.122 |
[6] | 乔冬梅,庞红宾,齐学斌,等. 黑麦草分泌有机酸的生物特性对铅污染修复的影响[J]. 农业工程学报,2011,27(12):195-199 |
[7] | 杨刚. 铅胁迫下氮肥形态对鱼腥草铅积累效应的影响[D]. 雅安: 四川农业大学,2006 |
[8] | 曹顺利,马雪泷,房江育,等. 柠檬酸和草酸对茶园土壤铅生物有效形态的影响[J]. 黄山学院学报,2013,15(5):54-59 |
[9] | 刘霞,刘树庆,唐兆宏. 河北主要土壤中Cd、Pb形态与油菜有效性的关系[J]. 生态学报,2002,22(10):1688-1694 |
[10] | GOVE B, HUTCHINSON J J, YOUNGS D, et al.Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens[J].International Journal of Phytoremediation,2002,4(4):267-281 10.1080/15226510208500087 |
[11] | 秦丽,湛方栋,祖艳群,等. 土荆芥和蚕豆/玉米间作系统中Pb、Cd、Zn的累积特征研究[J]. 云南农业大学学报(自然科学版),2017,32 (1):153-160 |
[12] | 徐健程,王晓维,聂亚平,等. 不同铜浓度下玉米间作豌豆对土壤铜的吸收效应研究[J]. 农业环境科学学报,2015,34(8):1508-1514 |
[13] | 秦欢,何忠俊,熊俊芬,等. 间作对不同品种玉米和大叶井口边草吸收积累重金属的影响[J]. 农业环境科学学报,2012,31(7):1281-1288 |
[14] | 王激清,茹淑华,苏德纯. 印度芥菜和油菜互作对各自吸收土壤中难溶态镉的影响[J]. 环境科学学报,2004,24(5):890-894 |
[15] | 程海宽,张彪,景鑫鑫,等. 玉米对铅胁迫的响应及体内铅化学形态研究[J]. 环境科学,2015,36(4):1468-1473 |
[16] | SONG Z W, ZHONG Z P, ZHONGD X, et al.Comparison between sequential and single extraction procedures for metal speciation in fresh and dried Sedum plumbizincicola[J].Journal of Central South University,2015,22(2):487-494 10.1007/s11771-015-2547-1 |
[17] | 王吉秀,太光聪,祖艳群,等. 硫营养对小花南芥(Arabis alpinal Var.parviflora Franch)累积铅锌的影响研究[J]. 农业环境科学学报,2011,30(6):1064-1069 |
[18] | ZU Y Q, LI Y, CHEN J J, et al.Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China[J].Environment International,2005,31(5):755-762 10.1016/j.envint.2005.02.004 |
[19] | 方其仙,祖艳群,湛方栋,等. 小花南芥(Arabis alpina L.var.parviflora Franch)对 Pb 和Zn 的吸收累积特征研究[J]. 农业环境科学学报,2009,28(3):433-437 |
[20] | 李元,方其仙,祖艳群. 2种生态型续断菊对Cd的累积特征研究[J]. 西北植物学,2008,28(6):1150-1154 |
[21] | 于蔚,李元,陈建军. 铅低累积玉米品种的筛选研究[J]. 环境科学导刊,2014,33(5):4-9 |
[22] | 邹小冷,祖艳群,李元,等. 云南某Pb锌矿区周边农田土壤Cd、Pb分布特征及风险评价[J]. 农业环境科学学报,2014,33(11):2143-2148 |
[23] | 鲍士旦. 土壤农化分析[M].3版. 北京: 中国农业出版社,2013 |
[24] | 张秋野,胡鹏杰,王鹏程,等. 伴矿景天汁液中重金属形态及絮凝沉淀效果优化[J]. 环境工程学报,2018,12(2):611-617 10.12030/j.cjee.201706178 |
[25] | WANG X, LIU Y G, ZENG G M,et a1.Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud[J].Environmental and Experimental Botany,2008,62:389-395 10.1016/j.envexpbot.2007.10.014 |
[26] | 孙凯,余永廷,朱涛涛,等. 苎麻在镉污染土壤修复中的研究进展[J]. 湖南农业科学,2015(3):152-154 |
[27] | 鲍娜娜,王中阳. 硅对水稻体内铅化学形态的影响[J]. 农业科技与装备,2014(4):12-14 |
[28] | 陈艳芳,李取生,何宝燕,等. 高/低Cd 累积苋菜品种金属累积特性与关键转运基因表达的关系[J]. 农业环境科学学报,2015,34(6):1041-1046 |
[29] | 秦丽. 间作系统中续断菊与作物Cd、Pb累积特征和根系分泌低分子有机酸机理[D]. 昆明: 云南农业大学,2017 |
[30] | 刘霞,刘树庆,唐兆宏. 河北主要土壤中Cd、Pb形态与油菜有效性的关系[J]. 生态学报,2002,22(10):1688-1694 |
[31] | 蔡如梦,石林. 矿物-有机质复合调理剂对Pb污染土壤的改良效果[J]. 农业环境科学学报,2017,36(12):2438-2444 |
[32] | 付卓锐,张丽,黄伊嘉. 四川花椒主产地土壤Pb的化学形态分析及生物有效性评价[J]. 四川林业科技,2017,38(2):72-78 |
[33] | 周建利,邵乐,朱凰榕,等. 间套种及化学强化修复重金属污染酸性土壤:长期田间试验[J]. 土壤学报,2014,51(5):1056-1065 |
[34] | 谭建波,陈兴,郭先华,等. 续断菊与玉米间作系统不同植物部位 Cd、Pb分配特征[J]. 生态环境学报,2015,24(4):700-707 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:986
HTML全文浏览数:813
PDF下载数:105
施引文献:0
出版历程
刊出日期:2018-11-29
-->
小花南芥与玉米间作对Pb化学形态及富集特征的影响
王吉秀1,,李想1,
李祖然2,
祖艳群1,
湛方栋1,
秦丽1,
李博1
1.云南农业大学资源与环境学院,昆明 650201
2.云南农业大学园林园艺学院,昆明 650201
基金项目: 国家自然科学基金资助项目(41761073) 云南农业大学自然科学青年基金资助项目(2015ZR06) 云南省农田无公害生产创新团队资助项目(2017HC015)
关键词: 间作/
铅/
富集/
化学形态/
污染土壤/
转运
摘要:间作植物根与根之间的相互作用影响根际土壤理化性质。目前关于超富集植物与作物间作根际土壤pH是否引起Pb赋存形态的变化,不同赋存形态与超富集植物和作物富集Pb的差异机理尚不清楚。设置不同Pb处理浓度,小花南芥和玉米间作、单作为对照的土培实验。随着Pb处理浓度增加,间作小花南芥生物量显著增加,范围为19.00%~181.08%,Pb富集系数为2.78,显著增加74.02%,转运系数为1.46,变化不显著,其中Pb含量显著增加25%。Pb赋存形态主要以难溶态果酸盐、蛋白质和磷酸盐结合态存在,约占总量的50%,间作显著降低小花南芥根际土壤溶液、根和茎叶中的pH;间作玉米生物量随着Pb处理浓度先显著增加后降低,增加范围为18.59%~49.48%,Pb富集系数平均为0.53,显著降低34.57%,转运系数平均为0.56,显著降低12.51%,Pb赋存形态以草酸盐结合态存在,约占30%,间作显著增加玉米根际土壤溶液、根和茎叶中的pH。揭示间作改变2种植物根际土壤溶液、根和茎叶中pH,从而引起Pb化学形态不同,这是导致超富集植物小花南芥吸收富集Pb,降低玉米体内Pb的主要原因。
English Abstract
Effects of intercropping of Arabis alpina L. var.parviflora Franch and Zea mays L. on chemical speciation and accumulation characteristics of Pb
WANG Jixiu1,,LI Xiang1,
LI Zuran2,
ZU Yanqun1,
ZHAN Fangdong1,
QIN Li1,
LI Bo1
1.College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
2.College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
Keywords: intercropping/
lead/
accumulation/
chemical speciation/
contaminated soil/
transport
Abstract:The interaction between roots of intercropping plants affects the physicochemical properties of rhizosphere soil. At present, whether the pH in rhizosphere soil of hyperaccumulator and crop intercropping triggers the change of Pb occurrence pattern, the difference mechanisms between occurrence patterns and Pb accumulation of hyperaccumulator and crop remain unknown. In this study, different Pb treatment concentrations, A. alpina and maize intercropping were set, soil monoculture was taken as control group of soil culture experiment. The results indicated that with the increase of Pb treatment concentrations, the significant increase range of biomass of intercropped A. alpine was 19.00%~181.08%, Pb enrichment coefficient was 2.78, significantly increasing by 74.02%, transport coefficient was 1.46 with no significant change, and Pb content significantly increased by 25%. The Pb occurrence patterns mainly existed in the form of insoluble fruit acid salt, and combined state of protein and phosphate, accounting for approximately 50% of the total Pb amount, intercropping significantly reduced the pH value of rhizosphere soil solution, root and stem of intercropped A. alpina. The biomass of intercropped maize increased first and then decreased, with significant increase range of 18.59%~49.48%. The Pb enrichment coefficient and transport coefficient decreased significantly. The former was 0.53 in average, remarkably decreasing by 34.57%, the latter was 0.56 in average, remarkably decreasing by 12.51%, the Pb occurrence pattern existed in the form of oxalate, which accounts for 30% of the total Pb amount in intercropped maize. Intercropping significantly raised the pH of rhizosphere soil solution, and the root and stem of intercropped maize. This study reveals that the hyperaccumulator A. alpine absorbs and accumulates Pb, and the reduction of Pb within maize is due to intercropping, which changes the pH of rhizosphere soil solution, and root and stem of two plants, resulting in difference chemical forms of Pb.