删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

3种植物水浸提液对工业园区污水处理厂污泥中重金属的淋洗效果

本站小编 Free考研考试/2021-12-31

周晨颖1,,
徐小逊1,2,
杨燕1,
赵伟1,
陶丽1
1.四川农业大学环境学院,成都 611130
2.四川省土壤环境保护重点实验室,成都 611130
基金项目: 四川农业大学2017年国家级创新训练计划项目(201710626017)




Leaching of heavy metals from sewage treatment plant sludge in industrial park by three washing agents extracted from plant materials

ZHOU Chenying1,,
XU Xiaoxun1,2,
YANG Yan1,
ZHAO Wei1,
TAO Li1
1.School of Environment, Sichuan Agricultural University, Chengdu 611130, China
2.Key Laboratory of Soil Environment Protection of Sichuan Province, Chengdu 611130, China

-->

摘要
HTML全文
(0)(0)
参考文献(43)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为探讨植物材料淋洗去除工业园区污水污泥中重金属的可行性,选用马桑(Coriaria nepalensis)、枳椇子(Hovenia acerba)和乌药(Lindera aggregata)的水浸提液作为淋洗剂,采用振荡淋洗实验研究了不同淋洗剂浓度和pH、淋洗时间和温度对其去除供试污泥中重金属的影响,并确定淋洗的最佳参数。结果表明,当3种淋洗剂浓度从20 g·L-1上升到80 g·L-1或淋洗温度从15 ℃增至55 ℃时,重金属去除率均呈先升高后稳定的趋势。同时,淋洗效果还受淋洗剂pH和淋洗时间的影响。基于淋洗效果、技术应用和经济成本,枳椇子、乌药和马桑水浸提液淋洗的最佳参数分别为pH 7、80 g·L-1、25 ℃、180 min,pH 4、100 g·L-1、25 ℃、180 min和pH 4、80 g·L-1、25 ℃、180 min,此时各淋洗剂重金属去除率总体表现为Cd>Cu>Pb>Ni。其中枳椇子和乌药对Cd去除率较高,分别为73.12%和82.60%,但Ni去除率仅为23.34%和19.42%;与前2种植物材料相比,马桑对Pb(36.40%)和Ni(27.88%)的去除率高,但对Cd(30.11%)和Cu(30.38%)的去除率相对较低。淋洗后污泥中Cu和Pb含量均可达农用污泥A级标准(CJ/T 309-2009),乌药淋洗后Cd及马桑淋洗后Ni含量可达到A级标准,其他淋洗剂情况下Cd和Ni含量可达到B级标准。此外,植物水浸提液淋洗污泥还能有效保留甚至增加其养分,降低可交换态、碳酸盐结合态和铁锰结合态重金属含量。研究表明,马桑、枳椇子和乌药在淋洗去除污泥中重金属和实现污泥土地应用上有一定潜力。
关键词: 植物水浸提液/
工业园区污水污泥/
重金属/
淋洗

Abstract:To explore the feasibility of removing heavy metals from the industrial sludge by water extracts of plant materials, three water extracts of Coriaria nepalensis(CN), Hovenia acerba (HA) and Lindera aggregata(LA) were used to remove heavy metals from the industrial sludge at different concentrations and pH, reaction times and temperatures. The results show that the heavy metal removal efficiencies by these three agents first increased, and then tended to stabilize at the agent concentrations of 20 ~ 80 g·L-1 or the reaction temperature of 15 ~ 55 ℃. Meanwhile, the heavy metal removal efficiencies were also affected by the pH of agents and the reaction time. On the basis of the leaching effects, the technical application and the cost, the optimum parameters of leaching, such as pH, agent concentrations, reaction times and temperatures, were pH 7, 80 g·L-1, 180 min and 25 ℃ for HA, pH 4, 100 g·L-1, 180 min and 25 ℃ for LA, and pH, 4, 80 g·L-1, 180 min and 25 ℃ for CN. Under these conditions, the removal efficiencies of heavy metal for three agents were Cd>Cu>Pb>Ni. Among the three agents, HA and LA leaching presented 73.12% and 82.60% Cd removal, while 23.34% and 19.42% Ni removal, respectively. CN leaching caused 36.40% Pb and 27.88% Ni removal, but the relatively low removal efficiencies for Cd (30.11%) and Cu (30.38%). The residual Cu and Pb concentrations in leached sludge by the three extracts complied with the agricultural standard for sludges (class A) (CJ/T 309-2009). Relatively, Cd and Ni concentrations in leached sludge by LA and CN satisfied with class A, while their concentrations in the other cases complied with class B. In addition, the nutrients in plant water extracts leached sludge was effectively retained or even raised, and the heavy metals in the exchangeable fraction, carbonate-bound fraction and Fe-Mn oxides-bound fraction decreased. Therefore, CN, HA and LA leaching could be the potential to remove heavy metals from industrial sludge and reuse sludge for agriculture.
Key words:plant water extracts/
industrial sludge/
heavy metals/
leaching.

加载中
[1] 闫怡新,高健磊,丁静雨. 超声波促进污泥过程减量化的研究进展及展望[J]. 环境工程, 2017,35(8):116-120
[2] 易建婷,张成,徐凤,等. 全国投运城镇污水处理设施现状与发展趋势分析[J]. 环境化学, 2015,34(9):1654-1660
[3] FANG W, DELAPP R C, KOSSON D S, et al.Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost[J].Chemosphere,2016,169:271-280 10.1016/j.chemosphere.2016.11.086
[4] 周启星,安婧,何康信. 我国土壤环境基准研究与展望[J]. 农业环境科学学报, 2011,30(1):1-6
[5] ROCHEBROCHARD S D L, NAFFRECHOUX E, DROGUI P, et al.Low frequency ultrasound-assisted leaching of sewage sludge for toxic metal removal, dewatering and fertilizing properties preservation[J].Ultrasonics Sonochemistry,2013,20(1) 109-117 10.1016/j.ultsonch.2012.08.001
[6] 解道雷,孔慈明,徐龙乾,等. 城市污泥中重金属存在形态、去除及稳定化研究进展[J]. 化工进展,2018,37(1):330-342
[7] REN J Z, LIANG H W, DONG L, et al.Sustainable development of sewage sludge-to-energy in China: Barriers identification and technologies prioritization[J].Renewable & Sustainable Energy Reviews,2017,67:384-396 10.1016/j.rser.2016.09.024
[8] 李雄伟,李俊,李冲,等. 我国污泥处理处置技术应用现状及发展趋势探讨[J]. 中国给水排水,2016,32(16):26-30
[9] WANG X J, CHEN J, YAN X B, et al.Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound-assisted citric acid[J].Journal of Industrial & Engineering Chemistry,2015,27:368-372 10.1016/j.jiec.2015.01.016
[10] REN X H, YAN R, WANG H C, et al.Citric acid and ethylene diamine tetra-acetic acid as effective washing agents to treat sewage sludge for agricultural reuse[J].Waste Management,2015,46:440-448 10.1016/j.wasman.2015.07.021
[11] WANG G Y, ZHANG S R, XU X X, et al.Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil[J].Chemosphere,2014,117(1):617-624 10.1016/j.chemosphere.2014.09.081
[12] YE M Y, YAN P F, SUN S Y, et al.Bioleaching combined brine leaching of heavy metals from lead-zinc mine tailings: Transformations during the leaching process[J].Chemosphere,2016,168:1115-1125 10.1016/j.chemosphere.2016.10.095
[13] SUANON F, SUN Q, DIMON B, et al.Heavy metal removal from sludge with organic chelators: comparative study of N, N-bis (carboxymethyl) glutamic acid and citric acid[J].Journal of Environmental Management,2016,166:341-347 10.1016/j.jenvman.2015.10.035
[14] 易龙生,王文燕,陶冶,等. 有机酸对污染土壤重金属的淋洗效果研究[J]. 农业环境科学学报,2013,32(4):701-707
[15] OHISHI K, TOUME K, ARAI M A, et al.Ricinine: A pyridone alkaloid from Ricinus communis, that activates the Wnt signaling pathway through casein kinase 1α[J].Bioorganic & Medicinal Chemistry,2014,22(17):4597-4601 10.1016/j.bmc.2014.07.027
[16] 余春瑰,张世熔,姚苹,等. 四种生物质材料水浸提液淋洗镉污染土壤及其废水处理研究[J]. 土壤,2015,47(6):1132-1138
[17] GUSIATIN Z M, KLIMIUK E.Metal (Cu, Cd and Zn) removal and stabilization during multiple soil washing by saponin[J].Chemosphere,2012,86(4):383-391 10.1016/j.chemosphere.2011.10.027
[18] CAO Y R, ZHANG S R, WANG G Y, et al.Removal of Pb, Zn, and Cd from contaminated soil by new washing agent from plant material[J].Environmental Science & Pollution Research,2017,24(9):1-9 10.1007/s11356-017-8542-3
[19] 鲍士旦. 土壤农化分析[M].3版. 北京:中国农业出版社,2000:30-108
[20] 中华人民共和国住房和城乡建设部. 城镇污水处理厂污泥处置农用泥质:CJ/T 309-2009[S].北京: 中国标准出版社,2009
[21] 俞雪梅,杨光辉,李萍,等. 不同产地马桑叶中三萜酸的含量测定[J]. 浙江中医杂志,2014,49(5):384-385
[22] 吴龙火,张剑.枳椇子的化学成分研究[J]. 时珍国医国药,2013,24(5):1028-1029
[23] 海萍,高原,李蓉涛,等. 乌药的化学成分研究[J]. 中草药,2016,47(6):872-875
[24] 曹雅茹,张世熔,陈月,等. 铅锌矿区污染土壤的植物淋洗剂筛选研究[J]. 农业环境科学学报,2015,34(10):1921-1927
[25] TESSIER A, CAMPBELL P G C, BISSON M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851 10.1021/ac50043a017
[26] 李光德,张中文,敬佩,等. 茶皂素对潮土重金属污染的淋洗修复作用[J]. 农业工程学报,2009,25(10):231-235
[27] 屠亮,陈洪龄. 一种修复Pb-Cd污染污泥的复合淋洗剂的研究[J]. 环境科学与技术,2011,34(10):151-154
[28] YUE C, ZHANG S R, XU X X, et al.Effects of surfactants on low-molecular-weight organic acids to wash soil zinc[J].Environmental Science & Pollution Research International,2015,23(5):4629-4638
[29] 吴烈善,吕宏虹,苏翠翠,等. 环境友好型淋洗剂对重金属污染土壤的修复效果[J]. 环境工程学报,2014,8(10):4486-4491
[30] 闵甜,王林,曹珂,等. 微波-柠檬酸浸出城市污泥中重金属[J]. 应用化工,2012,41(12):2081-2084
[31] 邓红侠,杨亚莉,李珍,等. 不同条件下皂苷对污染塿土中Cu、Pb的淋洗修复[J]. 环境科学,2015,36(4):1445-1452
[32] 李小孟,孟庆俊,高波,等. 溶解性有机质对重金属在土壤中吸附和迁移的影响[J]. 科学技术与工程,2016,16(34):314-319
[33] AMRANE C, BOUHIDEL K E.Integrated diffusion dialysis precipitation: Cementation for selective recovery of leaching chemicals and metal values from electroplating sludge[J].Hydrometallurgy,2018,177:34-40 10.1016/j.hydromet.2018.02.011
[34] 姚瑶,张世熔,王怡君,等. 3种环保型淋洗剂对重金属污染土壤的淋洗效果[J]. 环境工程学报,2018,12(7):2039-2046 10.12030/j.cjee.201801198
[35] 梁金利,蔡焕兴,段雪梅,等. 有机酸土柱淋洗法修复重金属污染土壤[J]. 环境工程学报,2012,6(9):3339-3343
[36] 李娟英,李振华,陈洁芸,等. 污水污泥中重金属污染物的溶出过程研究[J]. 环境工程学报,2014,8(8):3437-3442
[37] LI J, ZHANG L, GUO C Y, et al.Removal of Cr(VI) by sewage sludge based activated carbons impregnated with nanoscale zero-valent iron[J].Journal of Nanoscience & Nanotechnology,2017,17(9):6936-6941 10.1166/jnn.2017.14439
[38] 邓桂明,向彪,肖小芹,等. 基于GC-MS和UPLC-ESI-MS/MS法研究乌药化学成分[J]. 中药材,2016,39(10):2229-2236
[39] 张晶,陈全成,田义新,等. 枳椇子中的萜类成分[J]. 中国天然药物,2007,5(4):315-316
[40] 张斌,黄丽,张克强,等. 皂角苷对几种生活污泥中Cu和Zn的去除[J]. 农业环境科学学报,2016,35(6):1180-1187
[41] 许端平,李晓波,孙璐. 有机酸对土壤中Pb和Cd淋洗动力学特征及去除机理[J]. 安全与环境学报,2015,15(3):261-266
[42] WANG G Y, ZHANG S R, ZHONG Q M, et al.Effect of soil washing with biodegradable chelators on the toxicity of residual metals and soil biological properties[J].Science of the Total Environment,2018,625:1021-1029 10.1016/j.scitotenv.2018.01.019
[43] 余秀娟,霍守亮,昝逢宇,等. 巢湖表层沉积物中重金属的分布特征及其污染评价[J]. 环境工程学报,2013,7(2):439-450



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:678
HTML全文浏览数:548
PDF下载数:94
施引文献:0
出版历程

刊出日期:2018-11-12




-->








3种植物水浸提液对工业园区污水处理厂污泥中重金属的淋洗效果

周晨颖1,,
徐小逊1,2,
杨燕1,
赵伟1,
陶丽1
1.四川农业大学环境学院,成都 611130
2.四川省土壤环境保护重点实验室,成都 611130
基金项目: 四川农业大学2017年国家级创新训练计划项目(201710626017)
关键词: 植物水浸提液/
工业园区污水污泥/
重金属/
淋洗
摘要:为探讨植物材料淋洗去除工业园区污水污泥中重金属的可行性,选用马桑(Coriaria nepalensis)、枳椇子(Hovenia acerba)和乌药(Lindera aggregata)的水浸提液作为淋洗剂,采用振荡淋洗实验研究了不同淋洗剂浓度和pH、淋洗时间和温度对其去除供试污泥中重金属的影响,并确定淋洗的最佳参数。结果表明,当3种淋洗剂浓度从20 g·L-1上升到80 g·L-1或淋洗温度从15 ℃增至55 ℃时,重金属去除率均呈先升高后稳定的趋势。同时,淋洗效果还受淋洗剂pH和淋洗时间的影响。基于淋洗效果、技术应用和经济成本,枳椇子、乌药和马桑水浸提液淋洗的最佳参数分别为pH 7、80 g·L-1、25 ℃、180 min,pH 4、100 g·L-1、25 ℃、180 min和pH 4、80 g·L-1、25 ℃、180 min,此时各淋洗剂重金属去除率总体表现为Cd>Cu>Pb>Ni。其中枳椇子和乌药对Cd去除率较高,分别为73.12%和82.60%,但Ni去除率仅为23.34%和19.42%;与前2种植物材料相比,马桑对Pb(36.40%)和Ni(27.88%)的去除率高,但对Cd(30.11%)和Cu(30.38%)的去除率相对较低。淋洗后污泥中Cu和Pb含量均可达农用污泥A级标准(CJ/T 309-2009),乌药淋洗后Cd及马桑淋洗后Ni含量可达到A级标准,其他淋洗剂情况下Cd和Ni含量可达到B级标准。此外,植物水浸提液淋洗污泥还能有效保留甚至增加其养分,降低可交换态、碳酸盐结合态和铁锰结合态重金属含量。研究表明,马桑、枳椇子和乌药在淋洗去除污泥中重金属和实现污泥土地应用上有一定潜力。

English Abstract






--> --> --> 参考文献 (43)
相关话题/土壤 污染 植物 环境科学 环境工程