删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

芦苇生物炭复合载体固定化微生物去除水中氨氮

本站小编 Free考研考试/2021-12-31

郑华楠1,,
宋晴2,3,
朱义2,3,
孟庆瑞4,
崔心红1,2,3,
1.华东理工大学资源与环境工程学院,上海 200237
2.上海市园林科学规划研究院,上海 200232
3.上海城市困难立地绿化工程技术研究中心,上海 200232
4.上海电器科学研究所集团有限公司,上海 200232
基金项目: 上海市环保局科研项目沪环科[2018]第1号上海市环保局科研项目(沪环科[2018]第1号)




Removing ammonia nitrogen from wastewater by immobilized microorganism with reed biochar composite carrier

ZHENG Huanan1,,
SONG Qing2,3,
ZHU Yi2,3,
MENG Qingrui4,
CUI Xinhong1,2,3,
1.School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
2.Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China
3.Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai 200232, China
4.Shanghai Electrical Apparatus Research Institute Group Co.Ltd., Shanghai 200232, China

-->

摘要
HTML全文
(0)(0)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了去除水体中的氮素并实现水生植物的有效利用,以芦苇生物炭为无机载体,结合海藻酸钠(SA)、聚乙烯醇(PVA)作为复合载体,固定驯化后的硝化污泥制成固定化颗粒,去除水中氨氮。通过考察固定化颗粒机械强度、酸碱稳定性及传质性能,探究了生物炭添加量及生物炭粒径对固定化颗粒降解氨氮性能的影响。结果表明,芦苇生物炭有丰富的孔结构,表面含有较多的含氧官能团和胺基、磺酸基、羧基和酰胺基等基团,从而具有良好的吸附性能以及较强的酸碱缓冲能力,有利于微生物的黏附和增殖。以添加芦苇生物炭作为复合载体,固定化颗粒的破损率降低了2.4%,酸碱稳定性和传质性分别提升12.5%和55.8%;在72 h内,可以使氨氮降解率达到96.3%。此外,不同粒径生物炭的固定化颗粒对氨氮的吸附量有显著影响,随着生物炭粒径从0.60 mm减小至0.15 mm,氨氮的最大吸附量可以从0.30 mg·g-1增加到0.46 mg·g-1。因此,在固定化微生物的载体中添加生物炭,可以提升固定化颗粒性能,打通微孔孔道从而有利于基质的运输和扩散;同时减小生物炭粒径,为微生物提供更多的吸附位点,从而显著提高固定化微生物对氨氮的降解能力。
关键词: 废水氨氮去除/
固定化微生物技术/
生物炭复合载体

Abstract:In order to remove nitrogen from wastewater and realize the resource utilization of aquatic plants, the reed biochar, being taken as an inorganic carrier, combined sodium alginate (SA) and polyvinyl alcohol (PVA) to form a composite carrier. The acclimation nitrifying sludge was fixed on these composite carriers, and composite sludge pellets were produced to remove the ammonia nitrogen from wastewater. Through investigating the mechanical strength, acid-base stability and mass transfer performance of these pellets, the effects of biochar addition and particle size on the ammonia degradation ability of immobilized pellets were studied. The results showed that the reed biochar has an abundant pore structure, and lots of oxygen-containing functional groups, as well as amino, sulfonic, carboxyl and amide ones. This led to its good adsorption ability and strong acid-base buffer capacity, which was conducive to the adhesion and proliferation of microorganisms. Due to the reed biochar addition, the breakage rate of immobilized pellets was reduced by 2.4%. Acid-base stability and mass transfer increased by 12.5% and 55.8%, respectively. The degradation rate of ammonia nitrogen reached 96.3% after 72 h. Besides, the size of reed biochar has a significant effect on the adsorption capacity of ammonia nitrogen. When the diameter of biochar decreased from 0.60 mm to 0.15 mm,the maximum adsorption amount of ammonia nitrogen increased from 0.30 mg·g-1 to 0.4 mg·g-1. Therefore, biochar addition could improve the performance of immobilized pellets, open microporous channels for transport and diffusion of matrix. At the same time, the reduction of biochar size could provide more adsorption sites for microorganisms, thus significantly improve the degradation ability for ammonia nitrogen.
Key words:ammonia nitrogen removal from wastewater/
immobilized microbial technology/
biochar composite carrier.

加载中
[1] WUS Z, WANG D, MA L K, et al. An overall reading of action plan for prevention and control of water pollution[J]. Environmental Protection, 2015, 43(9): 14-18.
[2] WANG X, WANG Y G, SUN C H,et al. Formation mechanism and assessment method for urban black and odorous water body: A review[J] Chinese Journal of Applied Ecology, 2016, 27(4): 1331-1340.
[3] QIAO X L, ZHE L, ZHI W L. Immobilization of activated sludge in poly(ethylene glycol) by UV technology and its application in micro-polluted wastewater[J]. Biochemical Engineering Journal, 2010, 50(1): 71-76.
[4] KUI L Z, MIN P P. Improvement of Taihu water quality by the technology of immobilized nitrogen cycle bacteria[J]. Nuclear Science and Techniques, 2002, 13(2): 115-118.
[5] ROSTRON W M, STUCKEY D C, YOUNG A A. Nitrification of high strength ammonia wastewaters: Comparative study of immobilisation media[J]. Water Research, 2001, 35(5): 1169-1178.
[6] 周珊, 周汇, 单胜道. 竹炭固定化微生物去除水样中氨氮的研究[J]. 林业科学, 2009, 45(6): 133-138.
[7] 叶正芳, 俞红燕, 温丽丽, 等. 固定化微生物处理垃圾渗滤液[J]. 中国科学, 2008, 38(8): 721-727.
[8] 曲洋, 张培玉, 郭沙沙, 等. 复合固定化法固定化微生物技术在污水生物处理中的研究应用[J]. 四川环境, 2009, 28(3): 78-84.
[9] LI T, REN Y, WEI C H. Preparation of PVA-SA-PHB-AC composite carrier and m-cresol biodegradation by immobilized Lysinibacillus cresolivorans[J]. Environmental Science, 2013, 34(7): 2552-2559.
[10] BAO M, CHEN Q, GONG Y, et al. Removal efficiency of heavy oil by free and immobilised microorganisms on laboratory-scale[J]. Canadian Journal of Chemical Engineering, 2013, 91(1): 1-8.
[11] MOHAN D, PITTMAN C U, BRICKA M, al et, Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production [J]. Journal of Colloid and Interface Science, 2007, 310(1): 57-73.
[12] YUAN C, GUANG Y S, CARYT C, et al. Compositions and sorptive properties of crop residue-derived chars [J]. Environmental Science and Technology, 2004, 38(17): 4649-4655.
[13] MULLA S I, TALWAR M P, BAGEWADI Z K, et al. Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1[J]. Chemosphere, 2013, 90(6): 1920-1924.
[14] 高景峰, 王时杰, 樊晓燕, 等. 同步脱氮除磷好氧颗粒污泥培养过程微生物群落变化[J]. 环境科学, 2017, 38(11): 4696-4705.
[15] ZHOU S, HU Z Y, YU J Q. Biodegradation of phenol wastewater by pseudomonas sp. immobilized on bamboo-carbon[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(5): 889-894.
[16] HOUSE C H, BERGMANN B A, STOMP A M, et al. Combining constructed wetlands and aquatic and soil filters for reclamation and reuse of water[J]. Ecological Engineering, 1999, 12(1/2): 27-38.
[17] 崔心红. 水生植物应用[M]. 上海: 上海科学技术出版社, 2012.
[18] 由文辉, 刘淑媛. 水生经济植物净化受污染水体研究[J]. 华东师范大学学报(自然科学版), 2000, 46(1): 99-102.
[19] 何明雄, 胡启春, 罗安靖, 等. 人工湿地植物生物质资源能源化利用潜力评估[J]. 应用与环境生物学报, 2011, 17(4): 527-531.
[20] GOPAL B, GOEL U. Competition and allelopathy in aquatic plant communities[J]. Botanical Review, 1993, 59(3): 155-210.
[21] 孟庆瑞, 崔心红, 朱义, 等. 载氧化镁水生植物生物炭的特性表征及对水中磷的吸附[J]. 环境科学学报, 2017, 37(8): 2960-2967.
[22] 许晓毅, 尤晓露, 吕晨培, 等. 包埋固定化活性污泥脱氮特性与微生物群落分析[J]. 环境科学, 2017, 38(5): 2052-2058.
[23] CHEN B L, JOHNSON E J, CHEFETZ B, et al. Sorption of polar and nonpolar aromatic organic contaminants by plant cuticular materials: The role of polarity and accessibility[J]. Environmental Science and Technology, 2005, 39(16): 6138-6146.
[24] CHEN X, CHEN G, CHEN L, et al. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884.
[25] AHMAD M, SANG S L, DOU X, et al. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource Technology, 2012, 118(8): 536-544.
[26] ALWABEL M I, ALOMRAN A, ELNAGGAR A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J]. Bioresource Technology, 2013, 131(3): 374-379.
[27] 邢其毅, 裴伟伟, 徐瑞秋, 等. 基础有机化学: 上册[M]. 3版. 北京: 高等教育出版社, 2005: 174-180.
[28] LI R H, WANG J J, ZHOU B, et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute[J]. Bioresource Technology, 2016, 215: 209-214.
[29] LEE J H, JUNG H W, KANG I K, al et, Cell behavior on polymer surfaces with different functional groups[J]. Biomaterials, 1994, 15(9): 705-711.
[30] SULIMAN W, HARSH J B, ABU-LAIL N I, et al. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties[J]. Biomass & Bioenergy, 2016, 84: 37-48.
[31] OMAR S H. Oxygen diffusion through gels employed for immobilization[J]. Applied Microbiology & Biotechnology, 1993, 40(1): 1-6.
[32] MONBOUQUETTE H G, OLLIS D F. Scanning microfluorimetry of Ca-alginate immobilized zymomonas mobilis[J]. Nature Biotechnology, 1988, 6(9): 1076-1079.
[33] CHINTALA R, MOLLINEDO J, SCHUMACHER T E, et al. Nitrate sorption and desorption in biochars from fast pyrolysis[J]. Microporous and Mesoporous Materials, 2013, 179: 250-257.
[34] HALE S E, ALLING V, MARTINSEN V, et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars[J]. Chemosphere, 2013, 91(11): 1612-1619.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1514
HTML全文浏览数:1450
PDF下载数:182
施引文献:0
出版历程

刊出日期:2019-02-02




-->








芦苇生物炭复合载体固定化微生物去除水中氨氮

郑华楠1,,
宋晴2,3,
朱义2,3,
孟庆瑞4,
崔心红1,2,3,
1.华东理工大学资源与环境工程学院,上海 200237
2.上海市园林科学规划研究院,上海 200232
3.上海城市困难立地绿化工程技术研究中心,上海 200232
4.上海电器科学研究所集团有限公司,上海 200232
基金项目: 上海市环保局科研项目沪环科[2018]第1号上海市环保局科研项目(沪环科[2018]第1号)
关键词: 废水氨氮去除/
固定化微生物技术/
生物炭复合载体
摘要:为了去除水体中的氮素并实现水生植物的有效利用,以芦苇生物炭为无机载体,结合海藻酸钠(SA)、聚乙烯醇(PVA)作为复合载体,固定驯化后的硝化污泥制成固定化颗粒,去除水中氨氮。通过考察固定化颗粒机械强度、酸碱稳定性及传质性能,探究了生物炭添加量及生物炭粒径对固定化颗粒降解氨氮性能的影响。结果表明,芦苇生物炭有丰富的孔结构,表面含有较多的含氧官能团和胺基、磺酸基、羧基和酰胺基等基团,从而具有良好的吸附性能以及较强的酸碱缓冲能力,有利于微生物的黏附和增殖。以添加芦苇生物炭作为复合载体,固定化颗粒的破损率降低了2.4%,酸碱稳定性和传质性分别提升12.5%和55.8%;在72 h内,可以使氨氮降解率达到96.3%。此外,不同粒径生物炭的固定化颗粒对氨氮的吸附量有显著影响,随着生物炭粒径从0.60 mm减小至0.15 mm,氨氮的最大吸附量可以从0.30 mg·g-1增加到0.46 mg·g-1。因此,在固定化微生物的载体中添加生物炭,可以提升固定化颗粒性能,打通微孔孔道从而有利于基质的运输和扩散;同时减小生物炭粒径,为微生物提供更多的吸附位点,从而显著提高固定化微生物对氨氮的降解能力。

English Abstract






--> --> --> 参考文献 (34)
相关话题/生物 微生物 上海 技术 资源