删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

三氧化钨的生物合成及其对亚甲基蓝的光降解

本站小编 Free考研考试/2021-12-31

王亚男1,,
李伟1,
贾欠欠1,
段晋明1
1.西安建筑科技大学环境与市政工程学院,西安 710055
基金项目: 国家自然科学基金资助项目(41373123)
陕西省自然科学基础研究基金资助项目(2018JM5156)




Biosynthesis of tungsten trioxide and their photodegradation of methylene blue

WANG Yanan1,,
LI Wei1,
JIA Qianqian1,
DUAN Jinming1
1.School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

-->

摘要
HTML全文
(0)(0)
参考文献(29)
相关文章
施引文献
资源附件(0)
访问统计

摘要:利用菌株Pantoea sp.IMH生物合成三氧化钨(WO3)材料并对合成条件进行优化,通过高分辨透射电镜(HRTEM)、选区电子衍射(SAED)、X射线能谱(EDS)及X射线粉末衍射(XRD)对生物合成的WO3材料进行表征,同时研究了其光降解亚甲基蓝的性能。结果表明,生物合成WO3的最优合成条件是钨酸钠反应浓度为100 mmol·L-1、pH为2、细胞与钨酸钠反应时间为10 h、且煅烧温度为800 ℃,在该条件下,WO3为多晶片状结构。相比于标品WO3和化学合成纳米WO3,生物合成WO3材料对亚甲基蓝染料具有更好的光降解性能,可以在紫外光照射40 min内完全光降解亚甲基蓝(50 mL,0.037 5 mmol·L-1)。利用N2吸附-解吸等温线、对苯二甲酸(TA)荧光探针法、紫外漫反射(DRS)光谱和X射线光电子(XPS)能谱分别对不同WO3材料进行检测,结果表明生物合成WO3的良好催化性能与材料的比表面积、羟基自由基产量以及氧空位等均有关系。
关键词: 水污染/
三氧化钨/
生物合成/
亚甲基蓝/
光降解/
比表面积/
羟基自由基/
氧空位

Abstract:Tungsten trioxide (WO3) was biosynthesized by Pantoea sp. IMH and the synthesis conditions were optimized. Multiple techniques, including high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD) were used to identify and characterize the biosynthesized WO3. The characterization results show that the biosynthesized WO3 was rectangular sheet, polycrystalline structure, synthesized at the optimized conditions including 100 mmol·L-1 Na2WO4, pH=2, reaction time (10 h) of cells with Na2WO4, and calcination temperature (800 ℃). The photodegradation of methylene blue by biosynthesized WO3 was also studied. Compared with the standard WO3 and chemical nano-sized WO3, biosynthesized WO3 presented a better performance on the degradation of methylene blue. Methylene blue (50 mL, 0.037 5 mmol·L-1) could be completely photodegradated within 40 min ultraviolet light irradiation by biosynthesized WO3. Different WO3 materials were detected by N2 adsorption-desorption isotherms, fluorescence probe method with terephthalic acid (TA), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and X-ray photoelectron spectroscopy (XPS). The analysis results confirm that the property of specific surface area, hydroxyl radical and oxygen vacancies contributed to excellent photocatalytic activity of biosynthesized WO3.
Key words:water pollution/
tungsten trioxide/
biosynthesis/
methylene blue/
photodegradation/
specific surface area/
hydroxyl radical/
oxygen vacancies.

加载中
[1] AKHTAR M F, ASHRAF M, JAVEED A, et al.Toxicity appraisal of untreated dyeing industry wastewater based on chemical characterization and short term bioassays[J].Bulletin of Environmental Contamination and Toxicology,2016,96(4):502-507 10.1007/s00128-016-1759-x
[2] BELL J, BUCKLEY C A.Treatment of a textile dye in the anaerobic baffled reactor[J].Water SA,2003,29(2):129-134 10.4314/wsa.v29i2.4847
[3] SALEM M A, BAKR E A, ELATTAR H G.Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of congo red in aqueous solution[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2018,188:155-163 10.1016/j.saa.2017.07.002
[4] TAO P, SHAO M H, SONG C W, et al.Enhanced photocatalytic activity of Cu2O/Cu heterogeneous nanoparticles synthesized in aqueous colloidal solutions on degradation of methyl orange[J].Rare Metal Materials and Engineering,2016,45(9):2214-2218 10.1016/S1875-5372(17)30005-X
[5] VERMA A K, DASH R R, BHUNIA P.A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J].Journal of Environmental Management,2012,93(1):154-168 10.1016/j.jenvman.2011.09.012
[6] ZHANG H, XUE G, CHEN H, et al.Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment[J].Chemosphere,2018,191:64-71 10.1016/j.chemosphere.2017.10.026
[7] SIVASANKARAN S, KUMAR B, NAVEENKUMAR A Y.Synthesis, characterization and application of supported cobalt oxide natural light active photocatalyst[J].Advanced Science Letters,2017,23(3):1853-1857 10.1166/asl.2017.8490
[8] 刘志进, 段晋明, 王莉瑛. 红球菌LSJ-6介导的金纳米颗粒的合成及其对亚甲基蓝的吸附去除[J]. 环境科学学报,2017,37(6):2093-2098 10.13671/j.hjkxxb.2016.0385
[9] 谷一冉. 纳米三氧化钨的制备及其光催化性能研究[D]. 南京: 东南大学,2016
[10] LEE Y A, HAN S I, RHEE H, et al.Correlation between excited d-orbital electron lifetime in polaron dynamics and coloration of WO3 upon ultraviolet exposure[J].Applied Surface Science,2018,440:1244-1251 10.1016/j.apsusc.2018.01.157
[11] 卢圆圆, 刘果, 张静, 等.WO3中单斜相/六方相异相结的构建及提高光催化降解罗丹明B活性[J]. 催化学报,2016,37(3):349-358
[12] WEI S H, XING Y, LI Y, et al.Preparation and gas sensing properties of flower-like WO3 hierarchical architecture[J].Vacuum,2016,129:13-19 10.1016/j.jallcom.2015.09.120
[13] DIAH S, STEFANUS H N, HASNAN N, et al.Comparison of the morphology and structure of WO3 nanomaterials synthesized by a sol-gel method followed by calcination or hydrothermal treatment[J].Frontiers of Chemical Science and Engineering,2012,6(4):371-380 10.1007/s11705-012-1215-3
[14] 刘勇, 黄超, 翁秀兰, 等. 绿色合成纳米铁去除水中铬离子[J]. 环境工程学报,2016,10(8):4118-4124 10.12030/j.cjee.201601146
[15] TAKASHI O, YUMA S, ASEP B D N, et al.Biosorption of tungsten by Escherichia coli for an environmentally friendly recycling system [J].Industrial & Engineering Chemistry Research,2013,52:14441-14448 10.1021/ie401193y
[16] CHEN P Q, QIN M L, CHEN Z, et al.Solution combustion synthesis of nanosized WOx: Characterization, mechanism and excellent photocatalytic properties[J].RSC Advances,2016,86(6):83101-83109 10.1039/C6RA12375A
[17] TSYNTSARU N, CESIULIS H, DONTEN M, et al.Modern trends in tungsten alloys electrodeposition with iron group metals[J].Surface Engineering and Applied Electrochemistry,2013,48(6):491-520 10.3103/S1068375512060038
[18] YIN J, XING W, LI Y, et al.The influence factors of the crystallinity and crystal size of ZSM-5 zeolite[J].Journal of Molecular Catalysis (China),2012,26(2):162-168
[19] ZHAN T, TU W, CHENG Y, et al.The synthesis of micro and nano WO3 powders under the sparks of plasma electrolytic oxidation of Al in a tungstate electrolyte[J].Ceramics International,2018,44(9):10402-10411 10.1016/j.ceramint.2018.03.054
[20] TSYNTSARU N, CESIULIS H, DONTEN M, et al.Modern trends in tungsten alloys electrodeposition with iron group metals[J].Surface Engineering and Applied Electrochemistry,2013,48(6):491-520 10.3103/S1068375512060038
[21] XI X, LI M, MA L, et al.Tungsten trioxide nanorod having photocatalytic properties useful for preparing photocatalyst comprises one dimensional rod-shaped nano-material made up of tungsten trioxide: CN108147462-A[P]. 2017-11-22
[22] 王岳俊.TiO2光催化剂的改性及其降解染料的基础研究[D]. 长沙: 中南大学,2007
[23] XIE Y, YUAN C, LI X.Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation[J].Materials Science and Engineering B,2005,117(3):325-333 10.1016/j.mseb.2004.12.073
[24] LIU G, ZHAO J.Photocatalytic degradation of dye sulforhodamine B: A comparative study of photocatalysis with photosensitization[J].New Journal of Chemistry,2000,24(6):411-417 10.1039/B001573N
[25] VATTIKUTI S V P, POLICE A K R, SHIM J, et al.In situ fabrication of the Bi2O3-V2O5 hybrid embedded with graphitic carbon nitride nanosheets: Oxygen vacancies mediated enhanced visible-light-driven photocatalytic degradation of organic pollutants and hydrogen evolution[J].Applied Surface Science,2018,447:740-756 10.1016/j.apsusc.2018.04.040
[26] CHAI B, LIU C,YAN J, et al.In-situ synthesis of WO3 nanoplates anchored on g-C3N4Z-schemephotocatalysts for significantly enhanced photocatalytic activity[J].Applied Surface Science,2018,448:1-8 10.1016/j.apsusc.2018.04.116
[27] YUKIHIRO N, YOSHION.The pH dependence of OH radical formation in photo-electrochemical water oxidation with rutile TiO2 single crystals[J].Physical Chemistry Chemical Physics,2015,17:30570-30576 10.1039/C5CP04531B
[28] ZHONG X, SUN Y, CHEN X, et al.Mo doping induced more active sites in urchin-like W18O49 nanostructure with remarkably enhanced performance for hydrogen evolution reaction[J].Advanced Functional Materials,2016,26(32):5778-5786 10.1002/adfm.201601732
[29] CONG S, GENG F, ZHAO Z.Tungsten oxide materials for optoelectronic applications [J].Advanced Materials,2016,28:10518-10528 10.1002/adma.201601109



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1065
HTML全文浏览数:842
PDF下载数:149
施引文献:0
出版历程

刊出日期:2018-11-29




-->








三氧化钨的生物合成及其对亚甲基蓝的光降解

王亚男1,,
李伟1,
贾欠欠1,
段晋明1
1.西安建筑科技大学环境与市政工程学院,西安 710055
基金项目: 国家自然科学基金资助项目(41373123) 陕西省自然科学基础研究基金资助项目(2018JM5156)
关键词: 水污染/
三氧化钨/
生物合成/
亚甲基蓝/
光降解/
比表面积/
羟基自由基/
氧空位
摘要:利用菌株Pantoea sp.IMH生物合成三氧化钨(WO3)材料并对合成条件进行优化,通过高分辨透射电镜(HRTEM)、选区电子衍射(SAED)、X射线能谱(EDS)及X射线粉末衍射(XRD)对生物合成的WO3材料进行表征,同时研究了其光降解亚甲基蓝的性能。结果表明,生物合成WO3的最优合成条件是钨酸钠反应浓度为100 mmol·L-1、pH为2、细胞与钨酸钠反应时间为10 h、且煅烧温度为800 ℃,在该条件下,WO3为多晶片状结构。相比于标品WO3和化学合成纳米WO3,生物合成WO3材料对亚甲基蓝染料具有更好的光降解性能,可以在紫外光照射40 min内完全光降解亚甲基蓝(50 mL,0.037 5 mmol·L-1)。利用N2吸附-解吸等温线、对苯二甲酸(TA)荧光探针法、紫外漫反射(DRS)光谱和X射线光电子(XPS)能谱分别对不同WO3材料进行检测,结果表明生物合成WO3的良好催化性能与材料的比表面积、羟基自由基产量以及氧空位等均有关系。

English Abstract






--> --> --> 参考文献 (29)
相关话题/生物 材料 纳米 基础 水污染