删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

短流程膜工艺中紫外预处理对膜生物污染的影响

本站小编 Free考研考试/2021-12-31

丁燕燕1,2,,
王兴1,2,
马百文1,,
梁义3
1.中国科学院生态环境研究中心,饮用水科学与技术重点实验室,北京 100085
2.中国科学院大学,北京 100049
3.天津膜天膜科技股份有限公司,膜材料与膜应用国家重点实验室,天津 300457
基金项目: 国家重点研发计划项目(2016YFC0400802)
国家自然科学基金青年基金资助项目(51608514)
中国科学院饮用水科学与技术重点实验室专项(17Z03KLDWST)




Effect of UV pretreatment on membrane bio-contamination during shortened ultrafiltration membrane process

DING Yanyan1,2,,
WANG Xing1,2,
MA Baiwen1,,
LIANG Yi3
1.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.State Key Laboratory of Membrane Materials and Membrane Applications, Tianjin Motimo Membrane Technology Co.Ltd.,Tianjin 300457, China

-->

摘要
HTML全文
(0)(0)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要:近年来,以超滤膜为核心的短流程工艺因其占地面积小、净水效率高备受关注,但随之而来的生物污染问题是阻碍长期运行的瓶颈。基于此,考察了紫外预处理作用下,短流程工艺长期运行条件下的膜污染行为。结果表明,一定程度的紫外预处理(180 μW·cm-2)能有效减缓短流程膜工艺的生物污染问题。运行60 d后,膜池中微生物的死亡/存活比率由39.90%/60.10%升高至66.40%/33.60%,滤饼层中胞外聚合物浓度为未经紫外预处理时的76.50%。此时,紫外预处理的跨膜压差上升至34.40 kPa,而未经紫外预处理的跨膜压差高达41.50 kPa。然而,紫外预处理由于灭菌范围广和不可持续性,导致膜表面滤饼层中的微生物群落结构和丰度几乎无变化。同时,紫外预处理对出水水质几乎无影响。
关键词: 短流程膜工艺/
饮用水紫外预处理/
超滤膜/
生物污染

Abstract:In recent years, the shortened process with ultrafiltration (UF) membrane has shown excellent performance due to its small land use and high water purification efficiency. However, severe membrane fouling was induced by microorganisms after long time operation. Therefore, the corresponding behavior of UF membrane fouling was investigated with ultraviolet (UV) pretreatment. The results showed that UV pretreatment (180 μW·cm-2) could effectively slow down the bio-pollution. The dead/live rate of microorganisms in the membrane tank increased from 39.90%/60.10% to 66.40%/33.60% after running for 60 days. The concentration of extracellular polymeric substance released by microorganisms with UV pretreatment was 76.50% of that without UV pretreatment. In addition, the transmembrane pressure only increased to 34.40 kPa after 60 d of operation for this process with UV pretreatment, while it significantly increased to 41.50 kPa without UV pretreatment. Due to broad sterilization and unsustainable characteristics of UV pretreatment, little variation of microbial community and abundance in the cake layer was observed between these two processes. Moreover, the effluent quality was little influenced by UV pretreatment.
Key words:shortened ultrafiltration membrane process/
UV pretreatment in drinking water treatment/
ultrafiltration membrane/
biological contamination.

加载中
[1] PORCELLI N, JUDD S. Chemical cleaning of potable water membranes: The cost benefit of optimisation[J]. Water Research, 2010, 44(5): 1389-1398.
[2] 梁恒, 李星, 陈卫, 等. 引黄水库水超滤膜处理集成技术研究与综合示范[J]. 给水排水, 2012, 38(12): 15-18.
[3] YU W Z, GRAHAM N J D, FOWLER G D. Coagulation and oxidation for controlling ultrafiltrationmembrane fouling in drinking water treatment: Application of ozone at low dose in submerged membrane tank[J]. Water Research, 2016, 95: 1-10.
[4] 何寿平, 张国宇. 以浸没式超滤膜为核心的短流程净水工艺的应用与思考[J]. 给水排水, 2011, 47(1): 27-33.
[5] 曲明, 滕李军, 傅金祥, 等. 混凝-超滤短流程工艺处理北方水库原水[J]. 环境工程学报, 2014, 8(1): 210-214.
[6] AJMANI G S, GOODWIN D, MARSH K, et al. Modification of low pressure membranes with carbon nanotube layers for fouling control[J]. Water Research, 2012, 46(17): 5645-5654.
[7] 王红雨, 齐鲁, 陈杰, 等. 颗粒物粒径和有机物分子量对超滤膜污染的影响[J]. 环境工程学报, 2014, 8(5): 1993-1998.
[8] WANG X, MA B W, BAI Y H, et al. Comparison of the effects of aluminum and iron(III) salts on ultrafiltration membrane bio-fouling in drinking water treatment[J]. Journal of Environmental Sciences, 2018, 63: 96-104.
[9] 向帆. 强化混凝过程絮体形态演变特征及其对除锑(V)效果的影响[D]. 长沙: 湖南大学, 2014.
[10] KIM J, CAI Z X, BENJAMIN M M. Effects of adsorbents on membrane fouling by natural organicmatter[J]. Journal of Membrane Science, 2008, 310(1/2): 356-364.
[11] LEE J D, LEE S H, JO M H, et al. Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment[J]. Environmental Science & Technology, 2000, 34(17): 3780-3788.
[12] LIU T, CHEN Z L, YU W Z, et al. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water[J]. Water Research, 2011, 45(14): 4260-4268.
[13] WU J L, CHEN F T, HUANG X, et al. Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor[J]. Desalination, 2006, 197(1/2/3): 124-136.
[14] 杨纪超. 深圳污水处理厂紫外消毒的影响因素及改进对策[D]. 哈尔滨:哈尔滨工业大学, 2013.
[15] 赖日明, 罗永恒, 叶挺进, 等. 紫外线与氯联合消毒在饮用水处理中的应用研究[J]. 净水技术, 2010, 29(2): 15-18.
[16] 耿淑洁. 饮用水自由氯与臭氧或紫外联合消毒技术研究[D]. 北京: 中国科学院大学, 2010.
[17] 高宇, 周普玉, 杨霞, 等. 絮凝剂对工程废弃泥浆脱水性能的影响[J]. 环境工程学报, 2017, 11(10): 5597-5602.
[18] CAMPINAS M, ROSA M J. Assessing PAC contribution to the NOM fouling control in PAC/UF systems[J]. Water Research, 2010, 44(5): 1636-1644.
[19] LIN C F, HAO O J, HUANG Y J. Ultrafiltration processes for removing humic substances: Effect of molecular weight fractions and PAC treatment[J]. Water Research, 1999, 33(5): 1252-1264.
[20] KIM J, CAI Z X, BENJAMIN M M. NOM fouling mechanisms in a hybrid adsorption/membrane system[J]. Journal of Membrane Science, 2010, 349(1/2): 35-43.
[21] YANG H C, HAN S K, JI H K. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes[J]. Separation & Purification Technology, 2008, 62(3): 529-534.
[22] LEE J, AHN W Y, LEE C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Water Research, 2001, 35(10): 2435-2445.
[23] 段亮, 夏四清, 宋永会, 等. 活性污泥胞外聚合物提取方法优化[J]. 环境工程学报, 2010, 4(1): 63-66.
[24] 李宝, 高大文, 付源. 不同膜污染阶段微生物特征与膜污染的关系[J]. 哈尔滨工业大学学报, 2013, 45(2): 31-35.
[25] BERGAMASCO R, KONRADT-MORAES L C, VIEIRA M F, et al. Performance of a coagulation-ultrafiltration hybrid process for water supply treatment[J]. Chemical Engineering Journal, 2011, 166(2): 483-489.
[26] SHON H K, VIGNESWARAN S, KIM I S, et al. Effect of pretreatment on the fouling of membranes: Application in biologically treated sewage effluent[J]. Journal of Membrane Science, 2004, 234(1/2): 111-120.
[27] 侯铁. 紫外线(UV)消毒的一些特点[J]. 西南给排水, 2003, 25(3): 19-20.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1168
HTML全文浏览数:1055
PDF下载数:184
施引文献:0
出版历程

刊出日期:2019-01-08




-->








短流程膜工艺中紫外预处理对膜生物污染的影响

丁燕燕1,2,,
王兴1,2,
马百文1,,
梁义3
1.中国科学院生态环境研究中心,饮用水科学与技术重点实验室,北京 100085
2.中国科学院大学,北京 100049
3.天津膜天膜科技股份有限公司,膜材料与膜应用国家重点实验室,天津 300457
基金项目: 国家重点研发计划项目(2016YFC0400802) 国家自然科学基金青年基金资助项目(51608514) 中国科学院饮用水科学与技术重点实验室专项(17Z03KLDWST)
关键词: 短流程膜工艺/
饮用水紫外预处理/
超滤膜/
生物污染
摘要:近年来,以超滤膜为核心的短流程工艺因其占地面积小、净水效率高备受关注,但随之而来的生物污染问题是阻碍长期运行的瓶颈。基于此,考察了紫外预处理作用下,短流程工艺长期运行条件下的膜污染行为。结果表明,一定程度的紫外预处理(180 μW·cm-2)能有效减缓短流程膜工艺的生物污染问题。运行60 d后,膜池中微生物的死亡/存活比率由39.90%/60.10%升高至66.40%/33.60%,滤饼层中胞外聚合物浓度为未经紫外预处理时的76.50%。此时,紫外预处理的跨膜压差上升至34.40 kPa,而未经紫外预处理的跨膜压差高达41.50 kPa。然而,紫外预处理由于灭菌范围广和不可持续性,导致膜表面滤饼层中的微生物群落结构和丰度几乎无变化。同时,紫外预处理对出水水质几乎无影响。

English Abstract






--> --> --> 参考文献 (27)
相关话题/流程 工艺 污染 生物 微生物