李丽1,2,,
蒋雯雯1,
蔡玉勇1,
董双林1,2
1.中国海洋大学海水养殖教育部重点实验室,青岛 266003
2.青岛海洋科学与技术国家实验室,青岛 266237
基金项目: 国家重点研发计划2017YFE0122100
中国海洋大学海水养殖教育部重点实验室开放基金资助项目KLM2017002国家重点研发计划(2017YFE0122100)
中国海洋大学海水养殖教育部重点实验室开放基金资助项目(KLM2017002)
Performance evaluation of a six-stage bio-filter in recirculating aquaculture system
LIU Tingting1,,LI Li1,2,,
JIANG Wenwen1,
CAI Yuyong1,
DONG Shuanglin1,2
1.Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
2.Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:对硬头鳟(Oncorhynchus mykiss)和虹鳟(O. mykiss)鱼苗循环水养殖系统生物滤池运行效率以及其不同部位主要功能进行比较。于2017年5—11月,测定了六级生物滤池的基本水质指标(TAN、NO2--N和NO3--N等),并计算了六级生物滤池对TAN、NO2--N和NO3--N的去除率。于养殖中期,测定了六级生物滤池不同部位(BF1~BF6)的硝化速率、亚硝氮氧化速率和反硝化速率。结果表明:六级生物滤池对TAN、NO2--N和NO3--N的平均去除率分别为75.00%、44.00%和17.70%,其主要去除效果发生在BF1~BF3;六级生物滤池中BF1的硝化速率最高,与BF1较高的初始TAN浓度、充足的溶氧和最适pH有关;BF3的亚硝氮氧化速率最高,与BF3较高的初始NO2--N浓度有关;BF5的反硝化速率最高,与BF5较低的pH和较高NO3--N浓度有关。结果表明适当缩减生物滤池级数,并在循环水养殖系统中加入反硝化反应器,有利于提高系统运行效率。
关键词: 循环水养殖系统/
六级生物滤池/
去除率/
硝化作用
Abstract:In this study, the performance and main functions of different part locations in the six-stage bio-filters used in the recirculating aquaculture systems of Oncorhynchus mykiss and O. mykiss were compared. From May to November of 2017, the water quality parameters of the six-stage bio-filters, such as TAN, NO2--N and NO3--N, etc., were tested, and the removal efficiencies for these parameters were calculated accordingly. During the mid-period of culture, the nitrification rate, nitrite nitrogen oxidation rate, and denitrification rate at different locations of the six-stage bio-filters (BF1~BF6) were measured. The experimental results showed that the average removal rates of TAN, NO2--N and NO3--N by the bio-filter were 75.00%, 44.00% and 17.70%, respectively, which mainly occurred at BF1~BF3 locations. The highest nitrification rate happened at BF1 which was associated with high TAN, enough DO and feasible pH value at this location. The nitrite nitrogen oxidation rate of BF3 was the highest due to the higher initial NO2--N concentration. And the highest denitrification rate appeared at BF5, it was related to low pH and high NO3--N concentrations. The study indicated that proper reduction of the bio-filter stages and addition of denitrification reactor in the recirculating aquaculture systems could improve the operation efficiency of the system.
Key words:recirculating aquaculture system/
six-stage bio-filter/
removal rate/
nitrification.
[1] | XIE B, QIN J, YANG H, et al. Organic aquaculture in China: A review from a global perspective[J]. Aquaculture, 2013, 414-415(11): 243-253. |
[2] | 纪锋, 王炳谦, 孙大江, 等. 我国冷水性鱼类产业现状及发展趋势探讨[J]. 水产学杂志, 2012, 25(3): 63-68. |
[3] | BADIOLA M, BASURKO O C, PIEDRAHITA R, et al. Energy use in recirculating aquaculture systems (RAS): A review[J]. Aquaculture Engineering, 2018, 81(5): 57-70. |
[4] | 江蓓洁, 鲍献文, 吴德星, 等. 北黄海冷水团温、盐多年变化特征及影响因素[J]. 海洋学报, 2007, 29(4): 1-10. |
[5] | 邵东宏. 鳟鱼籽营养成分分析[J]. 农业科技与信息, 2010(9): 57. |
[6] | 刘澧津. 硬头鳟(Oncorhynchus Mykiss)苗种养殖试验[J]. 水产学杂志, 2001, 14(2): 48-49. |
[7] | 徐绍刚, 田照辉, 杨贵强. 硬头鳟苗种培育技术[J]. 中国水产, 2009(4): 47-48. |
[8] | AUBER A, GOHIN F, GOASCOZ N, et al. Decline of cold-water fish species in the bay of somme (English Channel, France) in response to ocean warming[J]. Estuarine Coastal & Shelf Science, 2017, 189(4): 189-202. |
[9] | 王峰, 雷霁霖, 高淳仁, 等. 国内外工厂化循环水养殖研究进展 [J]. 中国水产科学, 2013, 20(5): 1100-1111. |
[10] | WANG C Y, CHANG C Y, CHIEN Y H, et al. The performance of coupling membrane filtration in recirculating aquaculture system for tilapia culture[J]. International Biodeterioration & Biodegradation, 2016, 107(2): 21-30. |
[11] | 边陆军, 孙景伟, 代国庆. 半滑舌鳎的全封闭式循环水养殖技术[J]. 中国水产, 2013(12): 56-57. |
[12] | 张饮江, 孙飞, 陆永汉, 等. 闭合循环水工艺在褐点石斑鱼苗培育中的应用研究[J]. 渔业现代化, 2007, 34(1): 5-8. |
[13] | 郭进杰, 陈国平, 黄振玉, 等. 循环水系统中淡化养殖大黄鱼生长及卵巢发育的初步研究[J]. 上海海洋大学学报, 2016, 25(6): 847-852. |
[14] | 王威, 曲克明, 朱建新, 等. 3种滤料生物滤器的挂膜与黑鲷幼鱼循环水养殖效果[J]. 中国水产科学, 2012, 19(5): 833-840. |
[15] | 黄志涛, 宋协法, 李勋, 等. 基于高通量测序的石斑鱼循环水养殖生物滤池微生物群落分析[J]. 农业工程学报, 2016, 32(s1): 242-247. |
[16] | 杨志强, 朱建新, 刘慧, 等. 环境因子对循环水养殖系统中生物膜净化效率影响综述[J]. 渔业现代化, 2014, 41(6): 14-17. |
[17] | GUERDAT T C, LOSORDO T M, CLASSEN J J, et al. An evaluation of commercially available biological filters for recirculating aquaculture systems[J]. Aquacultural Engineering, 2010, 42(1): 38-49. |
[18] | 雷衍之. 养殖水环境化学实验[M]. 北京: 中国农业出版社, 2006. |
[19] | PFEIFFER T J, WILLS P S. Evaluation of three types of structured floating plastic media in moving bed biofilter for total ammonia nitrogen removal in a low salinity hatchery recirculating aquaculture system[J]. Aquaculture Engineering, 2011, 45(2): 51-59. |
[20] | BRATVOLD D, BROWDY C L. Simple electrometric methods for estimating microbial activity in aquaculture ponds[J]. Aquaculture Engineering, 1998, 19(1): 29-39. |
[21] | |
[22] | 张哲. 鳗鲡循环水养殖中水处理技术与养殖效果的研究[D]. 厦门: 集美大学, 2011. |
[23] | 王学闯, 魏晓安, 陆少鸣, 等. 曝气生物滤池去除亚硝酸盐氮的效果及影响因素[J]. 水处理技术, 2007, 33(9): 65-67. |
[24] | 张海耿, 张宇雷, 张业韡, 等. 循环水养殖系统中流化床生物滤器净水效果影响因素[J]. 环境工程学报, 2013, 7(10): 3849-3855. |
[25] | 冯志华, 俞志明, 刘鹰, 等. 循环水养殖系统中流化床生物滤器净水效果影响因素[J]. 中国环境科学, 2004, 24(3): 350-354. |
[26] | 曹涵. 循环水养殖生物滤池滤料挂膜及其水处理效果研究[D]. 青岛: 中国海洋大学, 2008. |
[27] | JIMENEZ E, GIMENEZ J B, SECO A, et al. Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate[J]. Bioresource Technology, 2012, 124(11): 478-484. |
[28] | ISNANSETYO A, GETSU S, SEGUCHI M, et al. Independent effects of temperature, salinity, ammonium concentration and pH on nitrification rate of the ariake seawater above mud sediment[J]. HAYATI Journal of Biosciences, 2014, 21(1): 21-30. |
[29] | MUNZ G, LUBELLO C, OLESZKIEWICZl J A. Factors affecting the growth rates of ammonium and nitrite oxidizing bacteria [J]. Chemosphere, 2011, 83(5): 720-725. |
[30] | ZHU S M, CHEN S L. An experimental study on nitrification biofilm performances using a series reactor system[J]. Aquaculture Engineering, 1999, 20(4): 245-259. |
[31] | GIMENEZ J B, RUANO M V, FERRER J, et al. Effect of pH and nitrite concentration on nitrite oxidation rate[J]. Bioresource Technology, 2011, 102(19): 8741. |
[32] | RIJIN J V, |
[33] | 万金保, 王敬斌. 同步硝化反硝化脱氮机理分析及影响因素研究[J]. 江西科学, 2008, 26(2): 345-350. |
[34] | |
[35] | 赖才胜, 王智勇, 许嘉翔, 等. 循环水养殖系统生物反应器脱氮技术[J]. 黑龙江水产, 2012(3): 29-30. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1229
HTML全文浏览数:1073
PDF下载数:190
施引文献:0
出版历程
刊出日期:2019-04-15
-->
循环水养殖系统六级生物滤池运行效果分析
柳婷婷1,,李丽1,2,,
蒋雯雯1,
蔡玉勇1,
董双林1,2
1.中国海洋大学海水养殖教育部重点实验室,青岛 266003
2.青岛海洋科学与技术国家实验室,青岛 266237
基金项目: 国家重点研发计划2017YFE0122100 中国海洋大学海水养殖教育部重点实验室开放基金资助项目KLM2017002国家重点研发计划(2017YFE0122100) 中国海洋大学海水养殖教育部重点实验室开放基金资助项目(KLM2017002)
关键词: 循环水养殖系统/
六级生物滤池/
去除率/
硝化作用
摘要:对硬头鳟(Oncorhynchus mykiss)和虹鳟(O. mykiss)鱼苗循环水养殖系统生物滤池运行效率以及其不同部位主要功能进行比较。于2017年5—11月,测定了六级生物滤池的基本水质指标(TAN、NO2--N和NO3--N等),并计算了六级生物滤池对TAN、NO2--N和NO3--N的去除率。于养殖中期,测定了六级生物滤池不同部位(BF1~BF6)的硝化速率、亚硝氮氧化速率和反硝化速率。结果表明:六级生物滤池对TAN、NO2--N和NO3--N的平均去除率分别为75.00%、44.00%和17.70%,其主要去除效果发生在BF1~BF3;六级生物滤池中BF1的硝化速率最高,与BF1较高的初始TAN浓度、充足的溶氧和最适pH有关;BF3的亚硝氮氧化速率最高,与BF3较高的初始NO2--N浓度有关;BF5的反硝化速率最高,与BF5较低的pH和较高NO3--N浓度有关。结果表明适当缩减生物滤池级数,并在循环水养殖系统中加入反硝化反应器,有利于提高系统运行效率。
English Abstract
Performance evaluation of a six-stage bio-filter in recirculating aquaculture system
LIU Tingting1,,LI Li1,2,,
JIANG Wenwen1,
CAI Yuyong1,
DONG Shuanglin1,2
1.Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
2.Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
Keywords: recirculating aquaculture system/
six-stage bio-filter/
removal rate/
nitrification
Abstract:In this study, the performance and main functions of different part locations in the six-stage bio-filters used in the recirculating aquaculture systems of Oncorhynchus mykiss and O. mykiss were compared. From May to November of 2017, the water quality parameters of the six-stage bio-filters, such as TAN, NO2--N and NO3--N, etc., were tested, and the removal efficiencies for these parameters were calculated accordingly. During the mid-period of culture, the nitrification rate, nitrite nitrogen oxidation rate, and denitrification rate at different locations of the six-stage bio-filters (BF1~BF6) were measured. The experimental results showed that the average removal rates of TAN, NO2--N and NO3--N by the bio-filter were 75.00%, 44.00% and 17.70%, respectively, which mainly occurred at BF1~BF3 locations. The highest nitrification rate happened at BF1 which was associated with high TAN, enough DO and feasible pH value at this location. The nitrite nitrogen oxidation rate of BF3 was the highest due to the higher initial NO2--N concentration. And the highest denitrification rate appeared at BF5, it was related to low pH and high NO3--N concentrations. The study indicated that proper reduction of the bio-filter stages and addition of denitrification reactor in the recirculating aquaculture systems could improve the operation efficiency of the system.