邵帅2,
李婷1,,
张世熔2,
王贵胤2,
徐小逊2
1.四川农业大学资源学院,成都 611130
2.四川农业大学环境学院,成都 611130
基金项目: 国家科技支撑计划2012BAD14B18-02
四川农业大学大学生创新训练计划1510626081国家科技支撑计划(2012BAD14B18-02)
四川农业大学大学生创新训练计划(1510626081)
Washing of Cd and Zn from contaminated soil by salt-extracted liquid of agricultural waste biological materials
LI Mingyue1,,SHAO Shuai2,
LI Ting1,,
ZHANG Shirong2,
WANG Guiyin2,
XU Xiaoxun2
1.College of Resources, Sichuan Agricultural University, Chengdu 611130, China
2.College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为了寻找成本低廉、环境友好、高效的重金属Cd和Zn淋洗剂,选取雅安市汉源县矿区污染土壤作为供试土壤,采用浓度0.3% KCl盐溶液提取金针菇菌渣(FVr)、茶树菇菌渣(AAr)、花生壳(AHL)和甘蔗皮(SOr)4种农业废弃生物质材料所得浸提液作为淋洗剂,通过恒温振荡淋洗实验探讨上述淋洗剂不同浓度、pH和时间条件下对污染土壤中镉(Cd)和锌(Zn)的淋洗效果。结果表明,4种生物质材料盐浸提液对Cd的淋洗率依次为FVr > SOr > AHL > AAr;对Zn的淋洗率则依次为SOr > FVr > AHL > AAr。随浓度上升,除FVr盐浸提液对土壤Cd和Zn的淋洗率呈线性增加外,其余盐浸提液对其淋洗率呈幂函数增长趋势。随pH增加,FVr和AAr、AHL和SOr盐浸提液对Cd和Zn的淋洗率分别呈对数、幂函数下降趋势(P<0.01)。随淋洗时间延长,4种生物质盐浸提液对土壤Cd和Zn的淋洗率变化均呈对数增加趋势(P<0.01)。综合淋洗率和土壤性质的变化,FVr与SOr盐浸提液在浓度为7%,pH为3的条件下持续振荡淋洗1 h可达到最佳淋洗效果,其对Cd的淋洗率分别为76.38%和49.54%;对Zn的淋洗率分别为29.24%和30.75%。FVr和SOr是具有一定潜力的重金属污染土壤修复生物质材料。
关键词: 农业废弃生物质/
盐浸提液/
镉锌污染土壤/
污染土壤淋洗修复
Abstract:In order to develop low-cost, environmentally friendly and high effective washing agents for heavy metals of cadmium (Cd) and zinc (Zn), the contaminated soil in mining area of Hanyuan county in Ya'an city was taken as test field, and 0.3% KCl solution extracted liquid from four kinds of agricultural waste biological materials, including Flammulina velutiper residue (FVr), Agrocybe aegerita residue (AAr), Arachis hypogaea Linn shell (AHL) and Saccharum officinarum rind (SOr), was taken as washing agent. Batch oscillating soil washing experiment at constant temperature was conducted to investigate the Cd and Zn washing efficiencies under the conditions of different concentration, pH value and washing time. Results showed that the orders of soil Cd and Zn washing efficiencies by the four biological material salt-extracted liquids were FVr>SOr >AHL>AAr and SOr>FVr>AHL>AAr, respectively. The washing efficiencies of soil Cd and Zn linearly increased with the increasing concentrations of FVr salt-extracted liquid, but increased as a power function model with the increasing concentrations of other three biological material salt-extracted liquids. With the increasing pH, the washing efficiencies of Cd and Zn logarithmically declined by using the salt-extracted liquids of FVr and AAr, but decreased as power function models by using the salt-extracted liquids of AHL and SOr (P<0.01). With the extension of washing time, the washing efficiencies of Cd and Zn logarithmically increased (P<0.01) by using four salt-extracted liquids. Considering the washing efficiency of the two heavy metals and the change of soil properties, the optimum washing efficiencies occurred at 7% the salt-extracted liquids of FVr and SOr, pH of 3, and 1 h contact time, and they were 76.38% and 49.54% for Cd and 29.24% and 30.75% for Zn, respectively. FVr and SOr could be potentially promising agricultural waste biological materials for Cd and Zn contaminated soil remediation.
Key words:agricultural waste biological materials/
salt-extracted liquid/
Cd and Zn contaminated soil/
washing restoration of contaminated soils.
[1] | 周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 2018, 39(6): 2884-2892. |
[2] | 董汉英, 仇荣亮, 赵芝灏, 等. 工业废弃地多金属污染土壤淋洗修复技术研究[J]. 土壤学报, 2010, 47(6): 1126-1133. |
[3] | LV J, LIU Y, ZHANG Z, et al. Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach[J]. Journal of Soils & Sediments, 2015, 15(1): 163-178. |
[4] | TANG W, SHAN B, ZHANG H, et al. Heavy metal speciation, risk, and bioavailability in the sediments of rivers with different pollution sources and intensity[J]. Environmental Science & Pollution Research, 2016, 23: 23630-23637. |
[5] | KULIKOWSKA D, GUSIATIN Z M, BU?KOWSKA K, et al. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil[J]. Chemosphere, 2015, 136: 42-49. |
[6] | MUKHOPADHYAY S, MUKHERJEE S, ADNAN N F, et al. Ammonium-based deep eutectic solvents as novel soil washing agent for lead removal[J]. Chemical Engineering Journal, 2016, 294: 316-322. |
[7] | BOENTE C, SIERRA C, RODRíGUEZ-VALDéS E, et al. Soil washing optimization by means of attributive analysis: Case study for the removal of potentially toxic elements from soil contaminated with pyrite ash[J]. Journal of Cleaner Production, 2016, 142: 2693-2699. |
[8] | 李玉双, 胡晓钧, 孙铁珩, 等. 污染土壤淋洗修复技术研究进展[J]. 生态学杂志, 2011, 30(3): 596-602. |
[9] | 陈春乐, 王果, 王珺玮. 3种中性盐与HCl复合淋洗剂对Cd污染土壤淋洗效果研究[J]. 安全与环境学报, 2014, 14(5): 205-210. |
[10] | ZHOU W, WANG X, CHEN C, et al. Enhanced soil washing of phenanthrene by a plant-derived natural biosurfactant, Sapindus saponin[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2013, 425(2): 122-128. |
[11] | ZOU Z, QIU R L, ZHANG W H, et al. The study of operating variables in soil washing with EDTA[J]. Environmental Pollution, 2009, 157(1): 229-236. |
[12] | 黎诗宏, 蒋卉, 朱梦婷, 等. 有机酸对成都平原镉污染土壤的淋洗效果[J]. 环境工程学报, 2017, 11(5): 3227-3232. |
[13] | 吴烈善, 吕宏虹, 苏翠翠, 等. 环境友好型淋洗剂对重金属污染土壤的修复效果[J]. 环境工程学报, 2014, 8(10): 4486-4491. |
[14] | 孙涛, 毛霞丽, 陆扣萍, 等. 柠檬酸对重金属复合污染土壤的浸提效果研究[J]. 环境科学学报, 2015, 35(8): 2573-2581. |
[15] | BARKA N, OUZAOUIT K, ABDENNOURI M, et al. Dried prickly pear cactus (Opuntia ficus indica) cladodes as a low-cost and eco-friendly biosorbent for dyes removal from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(1): 52-60. |
[16] | 余春瑰, 张世熔, 姚苹, 等. 四种生物质材料淋洗污染土壤中镉及废水处理[J]. 土壤, 2015, 47(6): 1132-1138. |
[17] | 孟龙, 张世熔, 王贵胤, 等. 四种生物质材料水浸提液对锌污染土壤的淋洗效果研究[J]. 环境科学学报, 2015, 35(4): 1152-1156. |
[18] | 范如芹, 罗佳, 高岩, 等. 农业废弃物的基质化利用研究进展[J]. 江苏农业学报, 2014, 30(2): 442-448. |
[19] | 王丹, 周旋, 吕靖龙. 农林废弃物阻控土壤中重金属对蔬菜污染的效果[J]. 武汉工程大学学报, 2018, 40(1): 28-34. |
[20] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999. |
[21] | 许超, 夏北城, 林颖. 柠檬酸对中低污染土壤中重金属的淋洗动力学[J]. 生态环境学报, 2009, 18(2): 507-510. |
[22] | 陈冬月, 施秋伶, 张进忠, 等. 螯合剂和鼠李糖脂联合淋洗污染土壤中 Cd[J]. 农业环境科学学报, 2016, 35(12): 2334-2344. |
[23] | 刘霞, 王建涛, 张萌, 等. 螯合剂和生物表面活性剂对Cu、Pb污染塿土的淋洗修复[J]. 环境科学, 2013, 34(4): 1590-1597. |
[24] | 胡雅君. 利用麦芽根制备的生物炭修复汞污染土壤研究[D]. 杭州: 浙江大学, 2018. |
[25] | 李星, 刘鹏, 张志祥. 两种水生植物处理重金属废水的FTIR比较研究[J]. 光谱学与光谱分析, 2009, 29(4): 945-949. |
[26] | 范璐, 王美美, 杨红卫, 等. 傅里叶变换红外吸收光谱识别五种植物油的研究[J]. 分析化学, 2007, 35(3): 390-392. |
[27] | 何雄, 周静峰, 师邱毅, 等. 甘蔗皮花色苷的提取及抗氧化能力研究[J]. 食品科技, 2012, 37(1): 190-193. |
[28] | 张庆玉, 陈诚, 李小林, 等. 金针菇菌渣不同处理方式对环境影响[J]. 西南农业学报, 2015, 28(2): 822-825. |
[29] | 陈松蔚, 李一, 杭方学, 等. 甘蔗皮的研究进展[J]. 广西糖业, 2017, 39(3): 34-38. |
[30] | 林芳芳, 易筱筠, 党志, 等. 改性花生壳对水中Cd2+和Pb2+的吸附研究[J]. 农业环境科学学报, 2011, 30(7): 1404-1408. |
[31] | 党立志, 毕薇, 邢占厂, 等. 利用茶树菇菌渣提取真菌多糖的方法研究[J]. 食用菌, 2014 (2): 58-60. |
[32] | BEGUM Z A, RAHMAN I M M, SAWAI H, et al. Effect of extraction variables on the biodegradable chelant-assisted removal of toxic metals from artificially contaminated european reference soils[J]. Water, Air & Soil Pollution, 2013, 224(3): 1381-1384. |
[33] | BEGUM Z A, RAHMAN I M, TATE Y, et al. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants[J]. Chemosphere, 2012, 87(10): 1161-1170. |
[34] | 唐伟. 生物样品中氨基酸类活性物质的检测方法及应用研究[D]. 南京: 东南大学, 2014. |
[35] | YANG Z, ZHANG S, LIAO Y, et al. Remediation of heavy metal contamination in calcareous soil by washing with reagents: A column washing[J]. Procedia Environmental Sciences, 2012, 16(4): 778-785. |
[36] | 邓红侠, 杨亚莉, 李珍, 等. 不同条件下皂苷对污染塿土中Cu、Pb的淋洗修复[J]. 环境科学, 2015, 36(4): 1445-1452. |
[37] | 易龙生, 王文燕, 陶冶, 等. 有机酸对污染土壤重金属的淋洗效果研究[J]. 农业环境科学学报, 2013, 32(4): 701-707. |
[38] | 陶虎春, 丁文毅, 李金波. 草酸-FeCl3复合淋洗剂对Pb、Zn污染土壤淋洗效果研究[J]. 安全与环境学报, 2017, 17(5): 1937-1942. |
[39] | VOGLAR D, LESTAN D. Pilot-scale washing of Pb, Zn and Cd contaminated soil using EDTA and process water recycling[J]. Chemosphere, 2013, 91(1): 76-82. |
[40] | 张中文, 李光德, 周楠楠, 等. 茶皂素对污染土壤中重金属的修复作用[J]. 水土保持学报, 2008, 22(6): 67-70. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:715
HTML全文浏览数:549
PDF下载数:197
施引文献:0
出版历程
刊出日期:2019-04-15
-->
农业废弃生物质盐浸提液淋洗镉锌污染土壤
李明月1,,邵帅2,
李婷1,,
张世熔2,
王贵胤2,
徐小逊2
1.四川农业大学资源学院,成都 611130
2.四川农业大学环境学院,成都 611130
基金项目: 国家科技支撑计划2012BAD14B18-02 四川农业大学大学生创新训练计划1510626081国家科技支撑计划(2012BAD14B18-02) 四川农业大学大学生创新训练计划(1510626081)
关键词: 农业废弃生物质/
盐浸提液/
镉锌污染土壤/
污染土壤淋洗修复
摘要:为了寻找成本低廉、环境友好、高效的重金属Cd和Zn淋洗剂,选取雅安市汉源县矿区污染土壤作为供试土壤,采用浓度0.3% KCl盐溶液提取金针菇菌渣(FVr)、茶树菇菌渣(AAr)、花生壳(AHL)和甘蔗皮(SOr)4种农业废弃生物质材料所得浸提液作为淋洗剂,通过恒温振荡淋洗实验探讨上述淋洗剂不同浓度、pH和时间条件下对污染土壤中镉(Cd)和锌(Zn)的淋洗效果。结果表明,4种生物质材料盐浸提液对Cd的淋洗率依次为FVr > SOr > AHL > AAr;对Zn的淋洗率则依次为SOr > FVr > AHL > AAr。随浓度上升,除FVr盐浸提液对土壤Cd和Zn的淋洗率呈线性增加外,其余盐浸提液对其淋洗率呈幂函数增长趋势。随pH增加,FVr和AAr、AHL和SOr盐浸提液对Cd和Zn的淋洗率分别呈对数、幂函数下降趋势(P<0.01)。随淋洗时间延长,4种生物质盐浸提液对土壤Cd和Zn的淋洗率变化均呈对数增加趋势(P<0.01)。综合淋洗率和土壤性质的变化,FVr与SOr盐浸提液在浓度为7%,pH为3的条件下持续振荡淋洗1 h可达到最佳淋洗效果,其对Cd的淋洗率分别为76.38%和49.54%;对Zn的淋洗率分别为29.24%和30.75%。FVr和SOr是具有一定潜力的重金属污染土壤修复生物质材料。
English Abstract
Washing of Cd and Zn from contaminated soil by salt-extracted liquid of agricultural waste biological materials
LI Mingyue1,,SHAO Shuai2,
LI Ting1,,
ZHANG Shirong2,
WANG Guiyin2,
XU Xiaoxun2
1.College of Resources, Sichuan Agricultural University, Chengdu 611130, China
2.College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
Keywords: agricultural waste biological materials/
salt-extracted liquid/
Cd and Zn contaminated soil/
washing restoration of contaminated soils
Abstract:In order to develop low-cost, environmentally friendly and high effective washing agents for heavy metals of cadmium (Cd) and zinc (Zn), the contaminated soil in mining area of Hanyuan county in Ya'an city was taken as test field, and 0.3% KCl solution extracted liquid from four kinds of agricultural waste biological materials, including Flammulina velutiper residue (FVr), Agrocybe aegerita residue (AAr), Arachis hypogaea Linn shell (AHL) and Saccharum officinarum rind (SOr), was taken as washing agent. Batch oscillating soil washing experiment at constant temperature was conducted to investigate the Cd and Zn washing efficiencies under the conditions of different concentration, pH value and washing time. Results showed that the orders of soil Cd and Zn washing efficiencies by the four biological material salt-extracted liquids were FVr>SOr >AHL>AAr and SOr>FVr>AHL>AAr, respectively. The washing efficiencies of soil Cd and Zn linearly increased with the increasing concentrations of FVr salt-extracted liquid, but increased as a power function model with the increasing concentrations of other three biological material salt-extracted liquids. With the increasing pH, the washing efficiencies of Cd and Zn logarithmically declined by using the salt-extracted liquids of FVr and AAr, but decreased as power function models by using the salt-extracted liquids of AHL and SOr (P<0.01). With the extension of washing time, the washing efficiencies of Cd and Zn logarithmically increased (P<0.01) by using four salt-extracted liquids. Considering the washing efficiency of the two heavy metals and the change of soil properties, the optimum washing efficiencies occurred at 7% the salt-extracted liquids of FVr and SOr, pH of 3, and 1 h contact time, and they were 76.38% and 49.54% for Cd and 29.24% and 30.75% for Zn, respectively. FVr and SOr could be potentially promising agricultural waste biological materials for Cd and Zn contaminated soil remediation.