罗会龙2,3,
刘士清4,
韩聪4,
宋秋浩5,
曹云者2,
1.北京建工环境修复股份有限公司,污染场地安全修复技术国家工程实验室,北京 100101
2.中国环境科学研究院,环境基准与风险评估国家重点试验室,北京 100012
3.北京师范大学水科学研究院,北京 100875
4.滨州市污染物排放总量控制办公室,滨州 256606
5.哈尔滨工业大学土木工程学院,哈尔滨 150001
基金项目: 北京建工环境修复股份有限公司污染场地安全修复技术国家工程实验室开放基金NEL-SRT201707北京建工环境修复股份有限公司污染场地安全修复技术国家工程实验室开放基金(NEL-SRT201707)
Effect and mechanism of water inundation on the leaching behavior of heavy metals in contaminated soils
YANG Bin1,2,3,,LUO Huilong2,3,
LIU Shiqing4,
HAN Cong4,
SONG Qiuhao5,
CAO Yunzhe2,
1.National Engineering Laboratory for Site Remediation Technologies, BCEG Environmental Remediation Co.Ltd., Beijing 100101, China
2.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3.College of Water Sciences, Beijing Normal University, Beijing 100875, China
4.Binzhou Office of Pollutant Discharge Control, Binzhou 256606, China
5.School of Civil Engineering, Harbin Institute of Technology, Harbin 150001, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为了明确淹水对土壤重金属浸出行为的影响及其作用机制,以实际场地重金属污染土壤为研究对象,开展了淹水实验。对淹水过程中土壤重金属的浸出浓度、氧化还原电位、pH、铁氧化物浓度及重金属形态等相关指标进行测定了分析。结果表明,淹水后,重金属浸出浓度随淹水时间呈现先增长后降低趋势。淹水初期(30 d),Cu、Zn、Cd和Pb浸出浓度分别增加了6.71%、4.03%、3.56%和4.55%。pH降低、有机质降解和铁氧化物还原溶解是导致重金属浸出浓度升高的主要原因。随淹水时间的持续增加,重金属浸出浓度逐渐降低并于90 d时趋于稳定。淹水结束时(180 d),Cu、Zn、Cd和Pb浸出浓度分别降低了23.78%、16.78%、15.48%和15.45%。重金属形态分析表明,淹水促使重金属赋存形态由酸可提取态转化为可还原态和可氧化态,降低了重金属活性;矿物成份分析证实了金属硫化铜物相的生成。新形成的无定形氧化铁对重金属的吸附作用和硫化物与重金属的化学沉淀作用是重金属浸出浓度降低的主要机制。该研究为淹水条件下重金属污染土壤风险控制提供了依据。
关键词: 土壤污染/
重金属/
淹水实验/
浸出浓度/
重金属形态/
X射线衍射分析
Abstract:A highly smelter-contaminated and aged soil was used to study the leaching behavior of typical heavy metals induced by water inundation in batch experiments. The leaching concentration of heavy metals, Eh, pH, content of iron oxides and heavy metal speciation during the experiment were studied. The results showed that the leachate concentrations of heavy metals increased first and then decreased with the incubation time. At the first 30 days of flooding treatment, the leachate concentrations of heavy metals: Cu, Zn, Cd and Pb increased by 6.71%, 4.03%, 3.56% and 4.55%, respectively, which was mainly due to pH decreasing, organic matter degradation and iron oxides reduction and dissolution induced by water inundation. However, leachate levels of heavy metals decreased drastically between 30 and 90 days, and remained relatively constant thereafter. At the end of flooding treatment (180 d), the leaching contents of Cu, Zn, Cd and Pb decreased by 23.78%,16.78%,15.48% and 15.45%, respectively. Speciation analysis revealed that forms of occurrence of soil heavy metals changed from an acid extractable one to a reducible or oxidizable one, which decreased the activity of heavy metals. Meanwhile, increase of peak intensity for copper sulfide was observed via X-ray diffraction analysis. The decreased leachate contents of heavy metals were attributed to the adsorption of newly formed amorphous iron oxides and the chemical precipitation of sulfides and heavy metals. This study has implication for the formulation of risk control for heavy metals in contaminated soils under water inundation condition.
Key words:soil contamination/
heavy metal/
water inundation/
leaching concentration/
heavy metal speciation/
X-ray diffraction.
[1] | ZHENG S A, ZHANG M K. Effect of moisture regime on the redistribution of heavy metals in paddy soil[J]. Journal of Environmental Sciences, 2011, 23(3): 434-443. |
[2] | MUKWATURI M, LIN C. Mobilization of heavy metals from urban contaminated soils under water inundation conditions[J]. Journal of Hazardous Materials, 2015, 285:445-452. |
[3] | KITAGISHI K, YAMANE I. Heavy Metal Pollution in Soils of Japan[M]. Tokyo: Japan Scientific Societies Press, 1981. |
[4] | HAN F X, BANIN A. Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils incubated: I. Under saturated conditions[J]. Water, Air and Soil Pollution, 1997, 95(1/2/3/4): 399-423. |
[5] | FENG X H, BANIN A. Long-term transformation and redistribution of potentially toxic heavy metals in arid-zone soils: II. Incubation at the field capacity moisture content[J]. Water, Air and Soil Pollution, 1999, 114(3/4): 221-250. |
[6] | KASHEM M A, SINGH B R. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn[J]. Nutrient Cycling in Agroecosystems, 2001, 61(3): 247-255. |
[7] | 朱丹妹, 刘岩, 张丽, 等. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响[J]. 农业环境科学学报, 2017, 36(8): 1508-1517. |
[8] | 刘昭兵, 纪雄辉, 彭华, 等. 水分管理模式对水稻吸收累积镉的影响及其作用机理[J]. 应用生态学报, 2010, 21(4): 908-914. |
[9] | 李义纯. 还原性土壤中镉活性变化及其制约机理研究[D]. 南京: 南京农业大学, 2009. |
[10] | 田桃, 曾敏, 周航, 等. 水分管理模式与土壤Eh值对水稻Cd迁移与累积的影响[J]. 环境科学, 2017, 38(1): 343-351. |
[11] | 任杰, 刘继东, 陈娟, 等. 醋渣和糠醛渣对赤泥中金属稳定性的影响[J]. 环境科学研究, 2016, 29(12): 1895-1903. |
[12] | PAN Y Y, KOOPMANS G F, BONTEN L T C, et al. Influence of pH on the redox chemistry of metal (hydr)oxides and organic matter in paddy soils[J]. Journal of Soils and Sediments, 2014, 14(10): 1713-1726. |
[13] | 邵兴华. 水稻土淹水过程铁氧化物转化对磷饱和度和磷、氮释放的影响[D]. 杭州: 浙江大学, 2005. |
[14] | SHAHEEN S M, KWON E E, BISWAS J K, et al. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt[J]. Chemosphere, 2017, 180: 553-563. |
[15] | BI C, ZHOU Y, CHEN Z, et al. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China[J]. Science of the Total Environment, 2018, 619-620: 1349-1357. |
[16] | PAN Y Y, BONTEN L T C, KOOPMANS G F, et al. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage[J]. Geoderma, 2016, 261: 59-69. |
[17] | 丁昌璞, 徐仁扣. 土壤的氧化还原过程及其研究法[M]. 北京: 科学出版社, 2011. |
[18] | STUMM W, MORGAN J J. Aquatic Chemistry:An Introduction Emphasizing Chemical Equilibria in Natural Waters[M]. New York: Wiley Interscience, 1981. |
[19] | DAVRANCHE M, BOLLINGER J C. Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides: Effect of reductive conditions[J]. Journal of Colloid and Interface Science, 2000, 227(2): 531-539. |
[20] | FANG H, HUANG L, WANG J, et al. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China[J]. Journal of Hazardous Materials, 2016, 302(17): 447-457. |
[21] | 贺前锋, 桂娟, 刘代欢, 等. 淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展[J]. 农业环境科学学报, 2016, 35(12): 2260-2268. |
[22] | 费杨, 阎秀兰, 李永华. 铁锰双金属材料在不同pH条件下对土壤As和重金属的稳定化作用[J]. 环境科学, 2018, 39(3): 1430-1437. |
[23] | CAPPUYNS V, SWENNENn R. The application of pH stat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials[J]. Journal of Hazardous Materials, 2008, 158(1): 185-195. |
[24] | 贾华丽, 郗敏, 孔范龙, 等. 土壤溶解性有机质生物降解研究进展[J]. 生态科学, 2016, 35(2): 183-188. |
[25] | 郭微, 戴九兰, 王仁卿. 溶解性有机质影响土壤吸附重金属的研究进展[J]. 土壤通报, 2012, 43(3): 761-768. |
[26] | ZHENG S A, ZHENG X Q, CHEN C. Transformation of metal speciation in purple soil as affected by waterlogging[J]. International Journal of Environmental Science & Technology, 2013, 10(2): 351-358. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:654
HTML全文浏览数:508
PDF下载数:168
施引文献:0
出版历程
刊出日期:2019-04-15
-->
淹水对土壤重金属浸出行为的影响及机制
杨宾1,2,3,,罗会龙2,3,
刘士清4,
韩聪4,
宋秋浩5,
曹云者2,
1.北京建工环境修复股份有限公司,污染场地安全修复技术国家工程实验室,北京 100101
2.中国环境科学研究院,环境基准与风险评估国家重点试验室,北京 100012
3.北京师范大学水科学研究院,北京 100875
4.滨州市污染物排放总量控制办公室,滨州 256606
5.哈尔滨工业大学土木工程学院,哈尔滨 150001
基金项目: 北京建工环境修复股份有限公司污染场地安全修复技术国家工程实验室开放基金NEL-SRT201707北京建工环境修复股份有限公司污染场地安全修复技术国家工程实验室开放基金(NEL-SRT201707)
关键词: 土壤污染/
重金属/
淹水实验/
浸出浓度/
重金属形态/
X射线衍射分析
摘要:为了明确淹水对土壤重金属浸出行为的影响及其作用机制,以实际场地重金属污染土壤为研究对象,开展了淹水实验。对淹水过程中土壤重金属的浸出浓度、氧化还原电位、pH、铁氧化物浓度及重金属形态等相关指标进行测定了分析。结果表明,淹水后,重金属浸出浓度随淹水时间呈现先增长后降低趋势。淹水初期(30 d),Cu、Zn、Cd和Pb浸出浓度分别增加了6.71%、4.03%、3.56%和4.55%。pH降低、有机质降解和铁氧化物还原溶解是导致重金属浸出浓度升高的主要原因。随淹水时间的持续增加,重金属浸出浓度逐渐降低并于90 d时趋于稳定。淹水结束时(180 d),Cu、Zn、Cd和Pb浸出浓度分别降低了23.78%、16.78%、15.48%和15.45%。重金属形态分析表明,淹水促使重金属赋存形态由酸可提取态转化为可还原态和可氧化态,降低了重金属活性;矿物成份分析证实了金属硫化铜物相的生成。新形成的无定形氧化铁对重金属的吸附作用和硫化物与重金属的化学沉淀作用是重金属浸出浓度降低的主要机制。该研究为淹水条件下重金属污染土壤风险控制提供了依据。
English Abstract
Effect and mechanism of water inundation on the leaching behavior of heavy metals in contaminated soils
YANG Bin1,2,3,,LUO Huilong2,3,
LIU Shiqing4,
HAN Cong4,
SONG Qiuhao5,
CAO Yunzhe2,
1.National Engineering Laboratory for Site Remediation Technologies, BCEG Environmental Remediation Co.Ltd., Beijing 100101, China
2.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3.College of Water Sciences, Beijing Normal University, Beijing 100875, China
4.Binzhou Office of Pollutant Discharge Control, Binzhou 256606, China
5.School of Civil Engineering, Harbin Institute of Technology, Harbin 150001, China
Keywords: soil contamination/
heavy metal/
water inundation/
leaching concentration/
heavy metal speciation/
X-ray diffraction
Abstract:A highly smelter-contaminated and aged soil was used to study the leaching behavior of typical heavy metals induced by water inundation in batch experiments. The leaching concentration of heavy metals, Eh, pH, content of iron oxides and heavy metal speciation during the experiment were studied. The results showed that the leachate concentrations of heavy metals increased first and then decreased with the incubation time. At the first 30 days of flooding treatment, the leachate concentrations of heavy metals: Cu, Zn, Cd and Pb increased by 6.71%, 4.03%, 3.56% and 4.55%, respectively, which was mainly due to pH decreasing, organic matter degradation and iron oxides reduction and dissolution induced by water inundation. However, leachate levels of heavy metals decreased drastically between 30 and 90 days, and remained relatively constant thereafter. At the end of flooding treatment (180 d), the leaching contents of Cu, Zn, Cd and Pb decreased by 23.78%,16.78%,15.48% and 15.45%, respectively. Speciation analysis revealed that forms of occurrence of soil heavy metals changed from an acid extractable one to a reducible or oxidizable one, which decreased the activity of heavy metals. Meanwhile, increase of peak intensity for copper sulfide was observed via X-ray diffraction analysis. The decreased leachate contents of heavy metals were attributed to the adsorption of newly formed amorphous iron oxides and the chemical precipitation of sulfides and heavy metals. This study has implication for the formulation of risk control for heavy metals in contaminated soils under water inundation condition.