删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

废旧镍钴锰酸锂电池正极材料闭环回收

本站小编 Free考研考试/2021-12-31

郑莹1,,
凌海1,
莫文婷1,
周钦文2,
高迎龙2,
蒋永议2,
刘建文2,
1.武昌首义学院城市建设学院,武汉 430064
2.湖北大学化学化工学院,武汉 430062
基金项目: 湖北省自然科学基金一般面上项目2018CFB785湖北省自然科学基金一般面上项目(2018CFB785)




Closed-loop recovery of anode materials for spent nickel-cobalt manganate lithium battery

ZHENG Ying1,,
LING Hai1,
MO Wenting1,
ZHOU Qinwen2,
GAO Yinglong2,
JIANG Yongyi2,
LIU Jianwen2,
1.College of Urban Construction, Wuchang Shouyi University, Wuhan 430064, China
2.College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China

-->

摘要
HTML全文
(0)(0)
参考文献(22)
相关文章
施引文献
资源附件(0)
访问统计

摘要:提出了一种闭环回收废旧镍钴锰酸锂电池正极活性物质的方法。采用H2SO4为浸出剂,H2O2为还原剂,浸出回收4种金属离子。结果表明:硫酸浓度为1.5 mol·L-1,反应温度为70 ℃,反应时间为25 min,反应固液比为20∶1 (g∶L),过氧化氢体积分数为1%时,金属镍、钴、锰和锂的浸出率分别为96.8%、96.2%、93.8%和99.1%;动力学分析显示,Ni、Co、Mn、Li浸出反应表观活化能分别为51.75、44.90、46.77和36.08 kJ·mol-1,属于化学反应控制。分离浸出滤液中Ni、Co、Mn离子后,制备Li2CO3终端产品,其XRD图谱显示产品成分较纯,可用于制备锂离子电池正极材料的前驱体。该工艺可实现废旧镍钴锰酸锂正极材料回收较高的经济和环境效益。
关键词: 废旧镍钴锰酸锂/
闭环回收/
浸出/
化学沉淀/
碳酸锂

Abstract:In this study, a closed-loop method for recovering the active material in anode of spent nickel-cobalt manganic acid lithium battery was proposed, which H2SO4 and H2O2 were used as leaching agent and the reducing agent, respectively, and four metal ions could be recovered through leaching. The results showed that the leaching rates of nickel, cobalt, manganese and lithium were 96.8%, 96.2%, 93.8% and 99.1%, respectively, at sulfuric acid concentration of 1.5 mol·L-1, reaction temperature of 70 ℃, reaction time of 25 min, solid-liquid ratio of 20∶1(g∶L) and H2O2 volume ratio of 1%. Kinetic analysis indicated that the apparent activation energies of Ni, Co, Mn and Li leaching were 51.75, 44.90, 46.77 and 36.08 kJ·mol-1, respectively, which could belong to chemical reaction control. The Ni, Co and Mn ions separated from the leachate were used to prepare the Li2CO3 terminal product, and its XRD pattern indicated a relatively pure ingredient, which can be used to prepare the precursor of the anode material for lithium ion battery. Through this closed-loop method, the high economic and environmental benefits of recycling nickel-cobalt manganic lithium anode materials can be achieved.
Key words:spent nickel-cobalt manganate lithium/
closed-loop recovery/
leaching/
chemical precipitation/
lithium carbonate.

加载中
[1] ZHANG X, XIE Y, LIN X, et al. An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries[J]. Journal of Material Cycles and Waste Management, 2013, 15(4): 420-430.
[2] AL-THYABAT S, NAKAMURA T, SHIBATA E, et al. Adaptation of minerals processing operations for lithium-ion(LIBs) and nickel metal hydride (NiMH) batteries recycling: Critical review[J]. Minerals Engineering, 2013, 45: 4-17.
[3] SENCANSKI J, BAJUK-BOGDANOVIC D, MAJSTOROVIC D, et al. The synthesis of Li (Co-Mn-Ni)O2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions[J]. Journal of Power Sources, 2017, 342: 690-703.
[4] YANG Y, XU S, HE Y. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes[J]. Waste Management, 2017, 64: 219-227.
[5] ZENG X, LI J, LIU L. Solving spent lithium-ion battery problems in China: Opportunities and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1759-1767.
[6] HE L P, SUN S Y, SONG X F, et al. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning[J]. Waste Management, 2015, 46: 523-528.
[7] CHEN X, FAN B, XU L, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries[J]. Journal of Cleaner Production, 2016, 112: 3562-3570.
[8] LI L, QU W, ZHANG X, et al. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries[J]. Journal of Power Sources, 2015, 282: 544-551.
[9] SUN L, QIU K. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2011, 194: 378-384.
[10] ZENG G, DENG X, LUO S, et al. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2012, 199: 164-169.
[11] XIN Y, GUO X, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-258.
[12] ZHENG X, ZHU Z, LIN X, et al. A mini-review on metal recycling from spent lithium ion batteries[J]. Engineering, 2018, 4: 361-370.
[13] CHEN X, GUO C, MA H, et al. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries[J]. Waste Management, 2018, 75: 459-468.
[14] CHEN X, MA H, LUO C, et al. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid[J]. Journal of Hazardous Materials, 2017, 326: 77-86.
[15] LI L, BIAN Y, ZHANG X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71: 362-371.
[16] LI L, FAN E, GUAN Y, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233.
[17] WANG H, HUANG K, ZHANG Y, et al. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11489-11495.
[18] CHEN X, CHEN Y, ZHOU T, et al. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries[J]. Waste Management, 2015, 38(1): 349-356.
[19] PAGNANELLI F, MOSCARDINI E, ALTIMARI P, et al. Cobalt products from real waste fractions of end of life lithium ion batteries[J]. Waste Management, 2016, 51: 214-221.
[20] MESHRAM P, ABHILASH, PANDEY B D, et al. Acid baking of spent lithium ion batteries for selective recovery of major metals: A two-step process[J]. Journal of Industrial & Engineering Chemistry, 2016, 43: 117-126.
[21] GOLMOHAMMADZADEH R, RASHCHI F, VAHIDI E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects[J]. Waste Management, 2017, 64: 244-254.
[22] MESHRAM P, PANDEY B D, MANKHAND T R. Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching[J]. Chemical Engineering Journal, 2015, 281: 418-427.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1311
HTML全文浏览数:1247
PDF下载数:114
施引文献:0
出版历程

刊出日期:2019-06-03




-->








废旧镍钴锰酸锂电池正极材料闭环回收

郑莹1,,
凌海1,
莫文婷1,
周钦文2,
高迎龙2,
蒋永议2,
刘建文2,
1.武昌首义学院城市建设学院,武汉 430064
2.湖北大学化学化工学院,武汉 430062
基金项目: 湖北省自然科学基金一般面上项目2018CFB785湖北省自然科学基金一般面上项目(2018CFB785)
关键词: 废旧镍钴锰酸锂/
闭环回收/
浸出/
化学沉淀/
碳酸锂
摘要:提出了一种闭环回收废旧镍钴锰酸锂电池正极活性物质的方法。采用H2SO4为浸出剂,H2O2为还原剂,浸出回收4种金属离子。结果表明:硫酸浓度为1.5 mol·L-1,反应温度为70 ℃,反应时间为25 min,反应固液比为20∶1 (g∶L),过氧化氢体积分数为1%时,金属镍、钴、锰和锂的浸出率分别为96.8%、96.2%、93.8%和99.1%;动力学分析显示,Ni、Co、Mn、Li浸出反应表观活化能分别为51.75、44.90、46.77和36.08 kJ·mol-1,属于化学反应控制。分离浸出滤液中Ni、Co、Mn离子后,制备Li2CO3终端产品,其XRD图谱显示产品成分较纯,可用于制备锂离子电池正极材料的前驱体。该工艺可实现废旧镍钴锰酸锂正极材料回收较高的经济和环境效益。

English Abstract






--> --> --> 参考文献 (22)
相关话题/材料 金属 化学 湖北大学 化学化工学院

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 含油污泥化学清洗处理实验研究与工艺参数优化
    肖楠1,,朱玲1,,王春雨1,杨子育1,张亚宁1,齐美荣21.北京石油化工学院环境工程系,北京1026172.华油惠博普科技股份有限公司,北京100011基金项目:北京市长城****资助项目CIT&TCD20190314国家自然科学基金资助项目21207006国家级大学生创新创业计划项目2019J0 ...
    本站小编 Free考研考试 2021-12-31
  • 利用钝化剂控制城镇街道灰尘重金属污染
    郑煜绫1,,谭琲琳1,2,王莉淋1,1.四川农业大学环境学院,四川省农业环境工程重点实验室,成都6111302.中国科学院大学,北京100049基金项目:四川省科技计划项目2017SZ0039四川省科技计划项目(2017SZ0039)Controlofheavymetalpollutioninurb ...
    本站小编 Free考研考试 2021-12-31
  • 多孔MoS2/g-C3N4材料对水环境中四环素的降解
    刘阳1,2,,高生旺2,王丽君2,朱建超2,高红1,夏训峰2,1.昆明理工大学建筑工程学院,昆明6505002.中国环境科学研究院,北京100012基金项目:国家科技支撑计划课题2014BAL02B02国家科技支撑计划课题(2014BAL02B02)Tetracyclinedegradationin ...
    本站小编 Free考研考试 2021-12-31
  • 淹水对土壤重金属浸出行为的影响及机制
    杨宾1,2,3,,罗会龙2,3,刘士清4,韩聪4,宋秋浩5,曹云者2,1.北京建工环境修复股份有限公司,污染场地安全修复技术国家工程实验室,北京1001012.中国环境科学研究院,环境基准与风险评估国家重点试验室,北京1000123.北京师范大学水科学研究院,北京1008754.滨州市污染物排放总量 ...
    本站小编 Free考研考试 2021-12-31
  • 铬污染场地渣土混合物的化学还原修复
    史开宇1,2,3,,颜湘华1,2,,范琴4,沈重阳3,王兴润1,21.北京建工环境修复股份有限公司污染场地安全修复技术国家工程实验室,北京1000152.中国环境科学研究院环境基准与风险评估国家重点实验室,北京1000123.中国农业大学资源与环境学院,北京1001934.四川省环境保护科学研究院, ...
    本站小编 Free考研考试 2021-12-31
  • 膜浓缩液淋滤飞灰后灰渣重金属热处理特性分析
    孟棒棒1,,田书磊1,,刘宏博1,艾恒雨2,王野1,3,李松1,4,黄启飞11.中国环境科学研究院,环境基准与风险评估国家重点实验室,北京1000122.哈尔滨理工大学化学与环境工程学院,哈尔滨1500403.东北大学资源与土木工程学院,沈阳1108194.东北电力大学化学工程学院,吉林132012 ...
    本站小编 Free考研考试 2021-12-31
  • 电化学氧化法处理含盐苯醌模拟废水
    薛娟琴1,,张立华1,2,于丽花1,1.西安建筑科技大学冶金工程学院,西安7100552.西安建筑科技大学环境与市政工程学院,西安710055基金项目:国家自然科学基金资助项目51874227陕西省自然科学基金资助项目2017ZDJC-25陕西省自然科学基础研究计划项目2018JM5139陕西省教育 ...
    本站小编 Free考研考试 2021-12-31
  • 干/湿混法对中温SCR催化剂碱土金属中毒的影响
    陈叮叮1,,沈伯雄1,,刘智1,潘奕君1,刘丽君1,卢凤菊11.河北工业大学能源与环境工程学院,天津300401基金项目:国家重点研发计划资助项目2018YFB0605101,2016YFC0209202天津市自然科学重点基金资助项目18JCZDJC39800国家重点研发计划资助项目(2018YFB ...
    本站小编 Free考研考试 2021-12-31
  • 双层滤料颗粒床与金属纤维毡梯级过滤特性
    姚志伟1,,刘鹏1,朱永锋1,杨国华1,1.宁波大学海运学院,宁波315211基金项目:国家高技术研究发展计划(863)项目2008AA05Z205浙江省新苗人才计划项目2018R405077宁波大学大学生科研创新计划重点项目2018SRIP1729国家高技术研究发展计划(863)项目(2008AA ...
    本站小编 Free考研考试 2021-12-31
  • Fenton预处理对城市污泥重金属形态及生物淋滤溶出影响
    于贺1,,邱春生1,2,,王晨晨1,2,节剑勇3,孙力平1,2,骆尚廉4,刘范嘉5,陈剑61.天津城建大学环境与市政工程学院,天津3003842.天津市水质科学与技术重点实验室,天津3003843.河南省建筑设计研究院有限公司,郑州4500144.台湾大学环境工程学研究所,台北106735.天津凯英 ...
    本站小编 Free考研考试 2021-12-31