苏姗1
1.北京工业大学建筑工程学院,北京市水质科学与水环境恢复工程重点实验室,北京 100124
基金项目: 中央引导地方科技发展专项 Z161100004516015 中央引导地方科技发展专项(Z161100004516015)
Direct nitrification of municipal wastewater by nitrifying bioactive filler
YANG Hong1,,SU Shan1
1.Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为开发更多的硝化填料应用形式,并为填料的实际应用提供参数借鉴,用人工配水条件下活性恢复的硝化生物活性填料直接处理市政污水,研究了填料填充方式、填充比例以及DO浓度等因素对填料氨氧化速率与装置中COD浓度的影响。结果表明,采用填料分散的填充方式,在填充率为12%、DO浓度为4~5 mg·L-1条件下,填料的最大氨氧化速率为30.2 mg·(L·h)-1,高于传统的活性污泥法。填充率与氨氧化速率整体上呈正相关的关系,在一定程度上可通过提高填充率进一步提高填料氨氧化速率。通过填料冲洗,可阻止装置中异养菌生长,利于市政污水中COD的存留。利用硝化填料对市政污水进行直接硝化的填料应用形式,可实现在保持较优氨氧化速率的前提下为后续反硝化存留碳源,减少水处理流程中的污泥产量,具有一定可行性。
关键词: 硝化生物活性填料/
市政污水直接硝化/
氨氧化速率/
COD降解
Abstract:In order to explore more applications of nitrification filler and provide the corresponding parameter reference for it, the municipal wastewater was directly treated by the nitrifying bioactive filler which was recovered by artificial wastewater. The effects of filler filling mode, filling ratio and DO concentration on the ammonia oxidation rate of the filler and the COD concentration in the device were investigated. The results showed that the maximum ammonia-oxidation rate of the filler could reach 30.2 mg·(L·h)-1 under the conditions of a dispersed filling method with a filling rate of 12% and a DO concentration of 4~5 mg·L-1, which was higher than that of the conventional activated sludge method. The filling rate is positively correlated with the ammonia oxidation rate as a whole. To some extent, the ammonia oxidation rate of the filler could be further improved by increasing the filling rate. The filler cleaning could prevent the growth of heterotrophic bacteria in the device and contribute to retain COD of municipal sewage. Generally, the nitrifying filler is used to directly nitrate municipal wastewater, which can not only keep a better ammonia oxidation rate, but also save carbon source for the subsequent denitrification and reduce sludge production in wastewater treatment process. Thus, it is feasible to use this method for direct nitrification of municipal wastewater.
Key words:nitrifying biological active filler/
direct nitrification of municipal wastewater/
ammonia oxidation rate/
COD degradation.
[1] | 张冬, 董岳, 黄瑛, 等 . 国内外污泥处理处置技术研究与应用现状[J]. 环境工程, 2015, 33(S1): 600-604. |
[2] | 朱启忠 . 生物固定化技术及应用[M]. 北京: 化学工业出版社, 2009. |
[3] | 王磊, 兰淑澄 . 微生物固定化技术在污水生物脱氮中的应用[J]. 环境科学, 1995, 16(6): 76-78. |
[4] | 吴晓磊 . 废水处理中的微生物固定化技术[J]. 中国给水排水, 1993, 9(5): 42-46. |
[5] | QIAO X , LIU Z , LIU Z , et al . Immobilization of activated sludge in poly(ethylene glycol) by UV technology and its application in micro-polluted wastewater[J]. Biochemical Engineering Journal, 2010, 50(1): 71-76. |
[6] | |
[7] | QIAO S , TIAN T , DUAN X M , et al . Novel single-stage autotrophic nitrogen removal via co-immobilizing partial nitrifying and anammox biomass[J]. Chemical Engineering Journal, 2013, 230: 19-26. |
[8] | LI Z , ZHANG Z , LI J , et al . Comparative study of the nitrification characteristics of two different nitrifier immobilization methods[J]. Biodegradation, 2009, 20(6): 859-865. |
[9] | 郝婧 . 包埋固定化脱氮菌群用于处理高氨氮废水的研究[D]. 北京: 清华大学, 2014. |
[10] | 许晓毅, 尤晓露, 吕晨培, 等 . 包埋固定化活性污泥脱氮特性与微生物群落分析[J]. 环境科学, 2017, 38(5): 2052-2058. |
[11] | 胡雪帅, 赵雪莲, 刘希强, 等 . 包埋硝化菌载体深度脱氮及其配套装置中试试验研究[J]. 现代化工, 2018, 38(7): 176-179. |
[12] | 赵雪莲, 娄高彬, 刘杰, 等 . 硝化菌包埋载体中试系统启动与稳定运行[J]. 水处理技术, 2014, 40(6): 103-106. |
[13] | 杨宏, 胡银龙 . 硝化细菌的培养及包埋固定化中试[J]. 环境科学, 2018, 39(6): 2763-2769. |
[14] | 孟婷, 杨宏 . 高效反硝化菌和包埋填料性能及微生物群落分析[J]. 环境科学, 2017, 38(8): 3339-3346. |
[15] | 国家环境保护总局 . 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[16] | 杜平, 孙志民, 刘强, 等 . SBBR不同填料类型的挂膜启动[J]. 广东化工, 2010, 37(12): 97-98. |
[17] | 王淑莹, 李论, 李凌云, 等 . 快速启动短程硝化过程起始pH值对亚硝酸盐积累的影响[J]. 北京工业大学学报, 2011, 37(7): 1067-1072. |
[18] | 杨宏, 姚仁达 . pH和硝化细菌浓度对氨氮氧化速率的影响[J]. 环境工程学报, 2017, 11(5): 2660-2665. |
[19] | 李亚新 . 活性污泥法理论与技术[M]. 北京: 中国建筑工业出版社, 2007. |
[20] | 于濛雨, 刘毅, 田玉斌, 等 . 包埋氨氧化细菌短程硝化的高效稳定运行[J]. 环境科学, 2017, 38(7): 2925-2930. |
[21] | 吴昌永, 彭永臻, 王然登, 等 . 溶解氧浓度对A2/O工艺运行的影响[J]. 中国给水排水, 2012, 28(3): 5-9. |
[22] | 侯金山 . 工业废水处理中溶解氧的控制[J]. 工业水处理, 1992, 12(6): 36. |
[23] | 王聪, 王淑莹, 张淼, 等 . 硝化液回流比对A2/O-BCO工艺反硝化除磷特性的影响[J]. 中国环境科学, 2014, 34(11): 2844-2850. |
[24] | 高春娣, 王惟肖, 李浩, 等 . SBR法交替缺氧好氧模式下短程硝化效率的优化[J]. 中国环境科学, 2015, 35(2): 403-409. |
[25] | 曾薇, 李磊, 杨莹莹, 等 . A2O工艺处理生活污水短程硝化反硝化的研究[J]. 中国环境科学, 2010, 30(5): 625-632. |
[26] | 巩秀珍, 于德爽, 袁梦飞, 等 . 后置短程反硝化AOA-SBR工艺实现低C/N城市污水的脱氮除磷[J]. 环境科学, 2019, 40(1) : 360-368. |
[27] | 原培胜 . 城镇污水处理厂运行成本分析[J]. 环境科学与管理, 2008, 33(1): 107-109. |
[28] | 杨敏, 颜秀勤, 孙雁, 等 . A2/O-MBR工艺城镇污水处理厂能耗特征与运行优化[J]. 给水排水, 2016, 52(12): 44-47. |
[29] | 梁锐 . 城市污水处理厂运行能耗影响因素研究[D]. 北京: 北京交通大学, 2014. |
[30] | 邵勇, 赵茂杰, 曾文超, 等 . 包埋固定化硝化菌剂处理合成氨工业废水[J]. 给水排水, 2017, 53(4): 68-73. |
[31] | 许晓毅, 张婷婷, 尤晓露, 等 . 包埋固定化硝化污泥处理氨氮废水的过程特性[J]. 中国环境科学, 2016, 36(10): 2988-2996. |
[32] | 张业健, 叶海仁, 郑向勇, 等 . 包埋硝化菌流化床处理温瑞塘河河水的中试研究[J]. 华东师范大学学报(自然科学版), 2011, 1(1): 179-184. |
[33] | 贾宝秋, 侯帅华, 吴银娜 . 固化硝化菌处理微污染水中试研究[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(5): 850-853. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1486
HTML全文浏览数:1180
PDF下载数:269
施引文献:0
出版历程
刊出日期:2019-04-15
-->
硝化生物活性填料对市政污水的直接硝化
杨宏1,,苏姗1
1.北京工业大学建筑工程学院,北京市水质科学与水环境恢复工程重点实验室,北京 100124
基金项目: 中央引导地方科技发展专项 Z161100004516015 中央引导地方科技发展专项(Z161100004516015)
关键词: 硝化生物活性填料/
市政污水直接硝化/
氨氧化速率/
COD降解
摘要:为开发更多的硝化填料应用形式,并为填料的实际应用提供参数借鉴,用人工配水条件下活性恢复的硝化生物活性填料直接处理市政污水,研究了填料填充方式、填充比例以及DO浓度等因素对填料氨氧化速率与装置中COD浓度的影响。结果表明,采用填料分散的填充方式,在填充率为12%、DO浓度为4~5 mg·L-1条件下,填料的最大氨氧化速率为30.2 mg·(L·h)-1,高于传统的活性污泥法。填充率与氨氧化速率整体上呈正相关的关系,在一定程度上可通过提高填充率进一步提高填料氨氧化速率。通过填料冲洗,可阻止装置中异养菌生长,利于市政污水中COD的存留。利用硝化填料对市政污水进行直接硝化的填料应用形式,可实现在保持较优氨氧化速率的前提下为后续反硝化存留碳源,减少水处理流程中的污泥产量,具有一定可行性。
English Abstract
Direct nitrification of municipal wastewater by nitrifying bioactive filler
YANG Hong1,,SU Shan1
1.Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
Keywords: nitrifying biological active filler/
direct nitrification of municipal wastewater/
ammonia oxidation rate/
COD degradation
Abstract:In order to explore more applications of nitrification filler and provide the corresponding parameter reference for it, the municipal wastewater was directly treated by the nitrifying bioactive filler which was recovered by artificial wastewater. The effects of filler filling mode, filling ratio and DO concentration on the ammonia oxidation rate of the filler and the COD concentration in the device were investigated. The results showed that the maximum ammonia-oxidation rate of the filler could reach 30.2 mg·(L·h)-1 under the conditions of a dispersed filling method with a filling rate of 12% and a DO concentration of 4~5 mg·L-1, which was higher than that of the conventional activated sludge method. The filling rate is positively correlated with the ammonia oxidation rate as a whole. To some extent, the ammonia oxidation rate of the filler could be further improved by increasing the filling rate. The filler cleaning could prevent the growth of heterotrophic bacteria in the device and contribute to retain COD of municipal sewage. Generally, the nitrifying filler is used to directly nitrate municipal wastewater, which can not only keep a better ammonia oxidation rate, but also save carbon source for the subsequent denitrification and reduce sludge production in wastewater treatment process. Thus, it is feasible to use this method for direct nitrification of municipal wastewater.