顾平1,
刘阳1,
何利斌1,
张光辉1,,
董丽华1,
袁艳林1
1.天津大学环境科学与工程学院,天津 300350
基金项目: 国家水体污染控制与治理科技重大专项2015ZX07406006国家水体污染控制与治理科技重大专项(2015ZX07406006)
Iodide removal from the simulated radioactive wastewater by predeoxygenation-precipitation-column membrane separation combined process
ZHOU Shishuai1,,GU Ping1,
LIU Yang1,
HE Libin1,
ZHANG Guanghui1,,
DONG Lihua1,
YUAN Yanlin1
1.School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为了优化沉淀-微滤组合除碘工艺,开发预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水,考察了小试实验的除碘效果、出水水质及连续出水、间歇出水模式的柱式膜污染情况。结果表明:使用Na2SO3作除氧剂、Cu2+作催化剂对原水进行预除氧,投加量分别为150 mg·L-1和1 mg·L-1;沉淀剂CuCl投加量为100 mg·L-1。实验装置连续运行216 h,累积处理水量为2 160 L,运行稳定后,I-平均去除率为93.9%,出水水质较稳定,出水Cu2+须进行后续处理。产生污泥的体积较小,浓缩倍数为8 640。间歇出水模式有利于减缓膜污染,柱式膜的最终膜比通量降至初始膜比通量的47%。与沉淀-微滤工艺相比,预除氧-沉淀-柱式膜分离组合工艺装置简单,运行成本降低。
关键词: 放射性废水处理/
碘离子污染废水/
化学沉淀法/
柱式膜分离/
膜污染
Abstract:In order to optimize the precipitation-microfiltration combined process for iodide removal, a predeoxygenation-precipitation-column membrane separation combined process was developed for iodide removal from the simulated radioactive wastewater. The laboratory scale experiments were conducted to study I- removal efficiency, effluent water quality and column membrane fouling under continuous and intermittent effluent drawing models. The results showed that raw water could be pre-deoxidized by a deoxidizer of Na2SO3 and a catalyst of Cu2+ with doses of 150 mg·L-1 and 1 mg·L-1, respectively. CuCl was used as precipitant and its dosage was 100 mg·L-1. The experimental device continued to run for 216 h, and cumulative treated water volume reached 2 160 L. At a stable operation stage, the average I- removal efficiency was 93.9% and the effluent quality maintained stable, while Cu2+ in the effluent needs to be treated subsequently. This process produced a small amount of sludge with a concentration factor of 8 640. Intermittent effluent drawing model was beneficial to retard the membrane fouling. The final specific membrane flux of the column membrane decreased to 47% of the initial value. Compared with the precipitation-microfiltration process, the predeoxygenation-precipitation-column membrane separation combined process has simpler device and lower operation cost.
Key words:radioactive wastewater treatment/
iodide contaminated wastewater/
chemical precipitation/
column membrane separation/
membrane fouling.
[1] | GARLAND J A, WAKEFORD R. Atmospheric emissions from the Windscale accident of October 1957[J]. Atmospheric Environment, 2007, 41(18): 3904-3920. |
[2] | HOU X L, POVINEC P P, ZHANG L Y, et al. Iodine-129 in seawater offshore Fukushima: Distribution, inorganic speciation, sources, and budget[J]. Environmental Science & Technology, 2013, 47(7): 3091-3098. |
[3] | 王川, 孔衍, 王月兴. 核事故医学应急碘预防措施分析[J]. 上海医学, 2012, 35(7): 639-642. |
[4] | 史建君. 放射性核素对生态环境的影响[J]. 核农学报, 2011, 25(2): 397-403. |
[5] | |
[6] | 朱昌寿. 放射性碘的危害评价[J]. 国外医学·放射医学核医学分册, 1995, 19(4): 172-176. |
[7] | 侯立安. 核沾染水处理技术及饮用水安全保障[J]. 给水排水, 2011, 37(11): 1-3. |
[8] | CHINO M, NAKAYAMA H, NAGAI H, et al. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere[J]. Journal of Nuclear Science and Technology, 2011, 48(7): 1129-1134. |
[9] | KAWAMURA H, KOBAYASHI T, FURUNO A, et al. Preliminary numerical experiments on oceanic dispersion of 131I and 137Cs discharged into the ocean because of the Fukushima Daiichi nuclear power plant disaster[J]. Journal of Nuclear Science and Technology, 2011, 48(11): 1349-1356. |
[10] | 贾麟, 刘阳, 张光辉, 等. 去除水体中放射性碘核素的研究进展[J]. 工业水处理, 2015, 35(7): 10-13. |
[11] | ZHANG X Y, GU P, LI X Y, et al. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon[J]. Chemical Engineering Journal, 2017, 322: 129-139. |
[12] | LI C M, WEI Y Z, WANG X P, et al. Efficient and rapid adsorption of iodide ion from aqueous solution by porous silica spheres loaded with calcined Mg-Al layered double hydroxide[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 193-200. |
[13] | CHEN J Y, GAO Q H, ZHANG X M, et al. Nanometer mixed-valence silver oxide enhancing adsorption of ZIF-8 for removal of iodide in solution[J]. Science of the Total Environment, 2019, 646: 634-644. |
[14] | RANA D, MATSUURA T, KASSIM M A, et al. Radioactive decontamination of water by membrane processes: A review[J]. Desalination, 2013, 321(15): 77-92. |
[15] | |
[16] | LIU Y, GU P, JIA L, et al. An investigation into the use of cuprous chloride for the removal of radioactive iodide from aqueous solutions[J]. Journal of Hazardous Materials, 2015, 302: 82-89. |
[17] | 杨云, 顾平, 刘阳, 等. 沉淀-微滤组合工艺处理模拟含碘放射性废水[J]. 化工学报, 2017, 68(3): 1211-1217. |
[18] | SATO I, KUDO H, TSUDA S. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water[J]. Journal of Toxicological Sciences, 2011, 36(6): 829-834. |
[19] | 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水标准检验方法: GB/T 5750-2006[S]. 北京: 中国标准出版社, 2006. |
[20] | LUO X, ZHANG G H, WANG X, et al. Research on a pellet co-precipitation micro-filtration process for the treatment of liquid waste containing strontium[J]. Journal of Radioanalytical & Nuclear Chemistry, 2013, 298(2): 931-939. |
[21] | JHAVERI A S, SHARMA M M. Kinetics of absorption of oxygen in aqueous solutions of cuprous chloride[J]. Chemical Engineering Science, 1967, 22(1): 1-6. |
[22] | 范崇正, 王昌燧, 赵化章, 等. 氯化亚铜氧化反应的化学动力学初探[J]. 物理化学学报, 1992, 8(5): 685-689. |
[23] | BEVERSKOG B, PUIGDOMENECH I. Revised pourbaix diagrams for copper at 25 to 300 ℃[J]. Journal of the Electrochemical Society, 1997, 144(10): 3476-3483. |
[24] | 邵忠宝, 赵敬棋. 催化Na2SO3除氧的研究[J]. 腐蚀科学与防护技术, 2002, 14(1): 49-51. |
[25] | 吴玉胜, 于海燕, 杨毅宏, 等. 添加剂对铝酸钠溶液晶种分解过程附聚及二次成核的影响[J]. 化工学报, 2005, 56(12): 2434-2439. |
[26] | 夏清, 陈常贵. 化工原理: 下册[M]. 天津: 天津大学出版社, 2005. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1037
HTML全文浏览数:1000
PDF下载数:123
施引文献:0
出版历程
刊出日期:2019-03-14
-->
预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水
周师帅1,,顾平1,
刘阳1,
何利斌1,
张光辉1,,
董丽华1,
袁艳林1
1.天津大学环境科学与工程学院,天津 300350
基金项目: 国家水体污染控制与治理科技重大专项2015ZX07406006国家水体污染控制与治理科技重大专项(2015ZX07406006)
关键词: 放射性废水处理/
碘离子污染废水/
化学沉淀法/
柱式膜分离/
膜污染
摘要:为了优化沉淀-微滤组合除碘工艺,开发预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水,考察了小试实验的除碘效果、出水水质及连续出水、间歇出水模式的柱式膜污染情况。结果表明:使用Na2SO3作除氧剂、Cu2+作催化剂对原水进行预除氧,投加量分别为150 mg·L-1和1 mg·L-1;沉淀剂CuCl投加量为100 mg·L-1。实验装置连续运行216 h,累积处理水量为2 160 L,运行稳定后,I-平均去除率为93.9%,出水水质较稳定,出水Cu2+须进行后续处理。产生污泥的体积较小,浓缩倍数为8 640。间歇出水模式有利于减缓膜污染,柱式膜的最终膜比通量降至初始膜比通量的47%。与沉淀-微滤工艺相比,预除氧-沉淀-柱式膜分离组合工艺装置简单,运行成本降低。
English Abstract
Iodide removal from the simulated radioactive wastewater by predeoxygenation-precipitation-column membrane separation combined process
ZHOU Shishuai1,,GU Ping1,
LIU Yang1,
HE Libin1,
ZHANG Guanghui1,,
DONG Lihua1,
YUAN Yanlin1
1.School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
Keywords: radioactive wastewater treatment/
iodide contaminated wastewater/
chemical precipitation/
column membrane separation/
membrane fouling
Abstract:In order to optimize the precipitation-microfiltration combined process for iodide removal, a predeoxygenation-precipitation-column membrane separation combined process was developed for iodide removal from the simulated radioactive wastewater. The laboratory scale experiments were conducted to study I- removal efficiency, effluent water quality and column membrane fouling under continuous and intermittent effluent drawing models. The results showed that raw water could be pre-deoxidized by a deoxidizer of Na2SO3 and a catalyst of Cu2+ with doses of 150 mg·L-1 and 1 mg·L-1, respectively. CuCl was used as precipitant and its dosage was 100 mg·L-1. The experimental device continued to run for 216 h, and cumulative treated water volume reached 2 160 L. At a stable operation stage, the average I- removal efficiency was 93.9% and the effluent quality maintained stable, while Cu2+ in the effluent needs to be treated subsequently. This process produced a small amount of sludge with a concentration factor of 8 640. Intermittent effluent drawing model was beneficial to retard the membrane fouling. The final specific membrane flux of the column membrane decreased to 47% of the initial value. Compared with the precipitation-microfiltration process, the predeoxygenation-precipitation-column membrane separation combined process has simpler device and lower operation cost.