删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

生物基质对SWIS脱氮效果及微生物的影响

本站小编 Free考研考试/2021-12-31

严群1,,
丁越1,2,
温慧凯1,2,
刘馥雯1,2,
胡晋博1,2,
蔡若宇1,2
1.江西理工大学建筑与测绘工程学院,赣州 341000
2.江西理工大学赣江流域水质安全保障工程技术研究中心,赣州 341000



Effect of biological matrix on denitrification and microorganisms of SWIS

YAN Qun1,,
DING Yue1,2,
WEN Huikai1,2,
LIU Fuwen1,2,
HU Jinbo1,2,
CAI Ruoyu1,2
1.School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2.Research Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China

-->

摘要
HTML全文
(0)(0)
参考文献(23)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为考察不同地下渗滤系统装置沿程脱氮效果的差异和脱氮微生物群落结构的分布状况,构建了2套改良装置(煤渣-生物基质的1#、煤渣的2#),对沿程出水的COD、氨氮、TN浓度和填料内的脱氮微生物丰度进行了测定分析。结果表明:系统在水力负荷为15 cm·d-1下,1#和2#装置对氨氮平均去除率分别为75.59%、80.00%,对TN平均去除率分别为60.63%、57.96%,1#的脱氮效果略优于2#装置;由沿程氮污染物浓度变化可知,2套装置的TN去除范围主要在层高60~80 cm处。与2#装置相比,添加生物基质的1#装置TN去除率提高了9.60%,且其装置内的Bradyrhizobium、Pseudolabrys、Dongia、Rhodanobacter、Rudaea等脱氮细菌的丰度也分别提升了0.51%、1.52%、1.02%、10.49%和3.15%。因此,生物基质可促进SWIS内部脱氮微生物丰度提升,并通过提供反硝化的碳源来强化脱氮效果。
关键词: 地下渗滤系统/
生物基质/
脱氮微生物/
变形菌

Abstract:In order to explore the difference of denitrification effect along the devices and the distribution of denitrifying microbial community structure in different subsurface wastewater infiltration systems, two modified devices with cinder-biological matrix(1#) and cinder matrix(2#) were constructed. The COD, ammonia nitrogen, TN concentration in the effluent along the reactors and the abundance of denitrifying microorganisms in the filler were measured and analyzed. The results showed at the hydraulic load of 15 cm·d-1, 1# and 2# devices could remove ammonia nitrogen with the average removal rates of 75.59% and 80.00%, respectively, and remove TN with the average removal rates of 60.63% and 57.96%, respectively, the denitrification effect of device 1# was slightly higher than 2#. Through the change of nitrogen pollutant concentration along the reactor of two devices, the TN removal mainly occurred at the 60~80 cm height. Compared with device 2#, the TN removal rate of device 1# with bio-matrix increased by 9.60%, and the abundance of denitrifying bacteria such as Bradyrhizobium, Pseudolabrys, Dongia, Rhodaanobacter, and Rudeea in it increased by 0.51%, 1.52%, 1.02%, 10.49% and 3.15%, respectively. Therefore, the biological matrix can promote the abundance of denitrifying microorganisms in the SWIS, and provide the denitrification carbon source to enhance the denitrification effect.
Key words:subsurface wastewater infiltration system/
biological matrix/
denitrifying microorganism/
Proteobacteria.

加载中
[1] 张建, 黄霞, 魏杰, 等. 地下渗滤污水处理系统的氮磷去除机理[J]. 中国环境科学, 2002, 22(5): 438-441.
[2] 李英华, 孙铁珩, 李海波, 等. 地下渗滤系统不同基质层对污染物的去除效果[J]. 东北大学学报(自然科学版), 2010, 31(5): 737-740.
[3] 秦伟, 王志强, 谢建治, 等. 分层填料地下渗滤系统处理农村分散生活污水[J]. 环境工程学报, 2013, 7(11): 4269-4274.
[4] 王鑫, 李海波, 孙铁珩. 地下渗滤污水处理系统中基质的研究进展[J]. 环境科学与技术, 2010, 33(12): 92-95.
[5] 孔刚, 许昭怡, 王勇, 等. 土壤介质对地下渗滤系统去除污染物的影响[J]. 环境科学与技术, 2011, 34(12H): 75-78.
[6] 杨健, 严群, 吴一蘩, 等. 不同填料渗滤系统净化生活污水的效果比较[J]. 同济大学学报(自然科学版), 2009, 37(11): 1502-1507.
[7] 张建, 黄霞, 施汉昌, 等. 掺加草炭的地下渗滤系统处理生活污水[J]. 中国给水排水, 2004, 20(6): 41-43.
[8] 李海波, 马吉福, 王鑫, 等. 水力负荷对污水地下渗滤系统处理效果的影响[J]. 环境工程学报, 2016, 10(2): 544-550.
[9] 杨铮铮, 张思, 刘春敬, 等. 基质混配地下渗滤系统脱氮除磷机理研究[J]. 水处理技术, 2016, 42(1): 56-61.
[10] 李英华, 李海波, 王鑫, 等. 生物填料地下渗滤系统对生活污水的脱氮[J]. 环境工程学报, 2013, 7(9): 3369-3374.
[11] 王敏, 侯瑞彬, 姬雅彤. 活性污泥增强地下渗滤系统去除生活污水中氮污染[J]. 环境污染与防治, 2018, 40(5): 544-546.
[12] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 城镇污水排放标准: GB 18918-2002[S]. 北京: 中国环境科学出版社, 2002.
[14] 周石磊, 黄廷林, 张春华, 等. 基于Miseq的好氧反硝化菌源水脱氮的种群演变[J]. 中国环境科学, 2016, 36(4): 1125-1135.
[15] CHERTOV O G, KOMAROV A S, BYKHOVETS S S, et al. Simulated soil organic matter dynamics in forests of the Leningrad administrative area, northwestern Russia[J]. Forest Ecology and Management, 2002, 169(1): 29-44.
[16] 陈谊, 孙宝盛, 张斌, 等. 不同MBR反应器中硝化菌群落结构的研究[J]. 中国环境科学, 2010, 30(1): 69-75.
[17] EO J, PARK K C. Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community[J]. Agriculture Ecosystems and Environment, 2016, 231: 176-182.
[18] 张小远, 肖瑶, 田浩, 等. 贝壳砂改良土壤中反硝化细菌的分析[J]. 微生物学通报, 2014, 41(1): 35-42.
[19] EO J, NA Y E, KIM M H. Influence of rhinoceros beetle ( Trypoxylus dichotomus septentrionalis ) larvae and temperature on the soil bacterial community composition under laboratory conditions[J]. Soil Biology and Biochemistry, 2017, 108: 27-35.
[20] POLIVKOVA M, SUMAN J, STREJCEK M, et al. Diversity of root-associated microbial populations of, Tamarix parviflora, cultivated under various conditions[J]. Applied Soil Ecology, 2018, 125: 264-272.
[21] 张东艳, 赵建, 杨水平, 等. 川明参轮作对烟地土壤微生物群落结构的影响[J]. 中国中药杂志, 2016, 41(24): 4556-4563.
[22] K?MPHER P, YOUNG C C, ARUN A B, et al. Pseudolabrys taiwanensis gen. nov. sp. nov. an alphaproteobacterium isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56: 2469-2472.
[23] DONG W, LU G, YAN L, et al. Characteristics of pellets with immobilized activated sludge and its performance in increasing nitrification in sequencing batch reactors at low temperatures[J]. Journal of Environmental Sciences, 2016, 42(4): 202-209.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:854
HTML全文浏览数:781
PDF下载数:93
施引文献:0
出版历程

刊出日期:2019-06-03




-->








生物基质对SWIS脱氮效果及微生物的影响

严群1,,
丁越1,2,
温慧凯1,2,
刘馥雯1,2,
胡晋博1,2,
蔡若宇1,2
1.江西理工大学建筑与测绘工程学院,赣州 341000
2.江西理工大学赣江流域水质安全保障工程技术研究中心,赣州 341000
基金项目:
关键词: 地下渗滤系统/
生物基质/
脱氮微生物/
变形菌
摘要:为考察不同地下渗滤系统装置沿程脱氮效果的差异和脱氮微生物群落结构的分布状况,构建了2套改良装置(煤渣-生物基质的1#、煤渣的2#),对沿程出水的COD、氨氮、TN浓度和填料内的脱氮微生物丰度进行了测定分析。结果表明:系统在水力负荷为15 cm·d-1下,1#和2#装置对氨氮平均去除率分别为75.59%、80.00%,对TN平均去除率分别为60.63%、57.96%,1#的脱氮效果略优于2#装置;由沿程氮污染物浓度变化可知,2套装置的TN去除范围主要在层高60~80 cm处。与2#装置相比,添加生物基质的1#装置TN去除率提高了9.60%,且其装置内的Bradyrhizobium、Pseudolabrys、Dongia、Rhodanobacter、Rudaea等脱氮细菌的丰度也分别提升了0.51%、1.52%、1.02%、10.49%和3.15%。因此,生物基质可促进SWIS内部脱氮微生物丰度提升,并通过提供反硝化的碳源来强化脱氮效果。

English Abstract






--> --> --> 参考文献 (23)
相关话题/系统 生物 微生物 环境科学 生活