郭敏辉2,
王侃1,
于洁1,,
叶丁璐1,
祝怡臻1
1.宁波大学建筑工程与环境学院,宁波 315211
2.浙江大学环境工程系,杭州 310058
基金项目: 宁波市科技计划项目2015C110001
浙江省自然科学基金资助项目Y19E080023
国家级高等学校大学生创新创业训练计划项目201811646019
浙江省大学生科技创新活动计划2018R405038宁波市科技计划项目(2015C110001)
浙江省自然科学基金资助项目(Y19E080023)
国家级高等学校大学生创新创业训练计划项目(201811646019)
浙江省大学生科技创新活动计划(2018R405038)
宁波大学王宽诚基金资助项目
Adsorption of aqueous methylene blue by biochar pyrolyzed from municipal solid waste
GAO Doudou1,,GUO Minhui2,
WANG Kan1,
YU Jie1,,
YE Dinglu1,
ZHU Yizhen1
1.Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
2.Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:热解是一项极具前景的城镇垃圾资源化处理技术,对热解产物的合理利用有助于热解技术的推广应用。以1套垃圾分选、热解工程设备产生的生物炭为原料,研究生物炭对水中亚甲基蓝的吸附效果,分析吸附动力学和吸附等温线;通过红外光谱、比表面积、孔径及微观形貌的表征方法阐释其吸附机理,并进行经济性分析。结果表明,生物炭对亚甲基蓝的去除率随生物炭投加量的增加而增加,随亚甲基蓝溶液初始浓度的增加而降低,在pH为9时达到最高。生物炭对亚甲基蓝的吸附过程符合准二级动力学方程和Langmuir吸附等温线方程,为单分子层吸附,最大吸附量为35.7 mg·g-1。生物炭具有较强的非均质性,其对亚甲基蓝的吸附主要发生在微孔中,且亚甲基蓝与生物炭表面的O—H、NH3+、NH2、C—O等基团发生了作用,说明亚甲基蓝在生物炭表面的吸附受生物炭孔结构和化学性质2个方面的影响。生物炭的制备过程可产生446~708元·t-1的经济效益,作为废水处理的吸附剂具有较好的应用前景。
关键词: 城镇垃圾/
热解/
生物炭/
吸附/
亚甲基蓝
Abstract:Pyrolysis is a promising technology for municipal solid waste treatment and recycling. The reasonable utilization of pyrolysis products will be conducive to the generalization and application of pyrolysis technology. The adsorption performance of aqueous methylene blue by biochar derived from a set of industrial municipal solid waste sorting and pyrolysis equipment was studied, and the adsorption kinetics, isotherms were analyzed. Furthermore, the adsorption mechanisms were elucidated by infrared spectrum, specific surface area, pore size and micro-morphology, and the economic analysis was also provided. The results showed that the removal efficiency of methylene blue by biochar increased with the increase of biochar dosage, while decreased with the increase of the initial concentration of methylene blue, and the maximum removal efficiency occurred at pH 9. The adsorption process can be well fitted by the quasi-second-order kinetic equation and Langmuir adsorption isotherm, which indicated that above adsorption process could be described by monolayer adsorption with the maximum adsorption capacity of 35.7 mg·g-1. The biochar was strongly heterogeneous. The adsorption of methylene blue mainly occurred in the micropores of biochar, and methylene blue reacted with functional groups of biochar, such as O—H, NH3+, NH2, and C—O, indicating that the adsorption of methylene blue is simultaneously affected by the pore structure and chemical properties of biochar. The production of biochar from municipal solid waste can yield a profit of 446~708 yuan·t-1, thus as an adsorbent for wastewater treatment, this biochar has a good application prospect.
Key words:municipal solid waste/
pyrolysis/
biochar/
adsorption/
methylene blue.
[1] | HWANG I, KOBAYASHI J, KAWAMOTO K. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF[J]. Waste Management, 2014, 34(2): 402-410. |
[2] | 罗亭. 城镇有机垃圾热解生物炭理化性质研究[D]. 重庆: 重庆大学, 2014. |
[3] | 苏毅, 朱惠春, 张金亮, 等. 城市垃圾热化学转化处理技术进展与应用[J]. 工业锅炉, 2015(1): 7-14. |
[4] | CHENG H F, HU Y N. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824. |
[5] | CHEN D, YIN L J, WANG H, et al. Pyrolysis technologies for municipal solid waste: A review[J]. Waste Management, 2014, 34(12): 2466-2486. |
[6] | ATE? F, MISKOLCZI N, BORSODI N. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: Product yields, gas and pyrolysis oil properties[J]. Bioresource Technology, 2013, 133: 443-454. |
[7] | ARENA U. Process and technological aspects of municipal solid waste gasification. A review[J]. Waste Management, 2012, 32(4): 625-639. |
[8] | NAKAGAWA K, NAMBA A, MUKAI S R, et al. Adsorption of phenol and reactive dye from aqueous solution on activated carbons derived from solid wastes[J]. Water Research, 2004, 38(7): 1791-1798. |
[9] | JIN H M, CAPAREDA S, CHANG Z Z, et al. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation[J]. Bioresource Technology, 2014, 169: 622-629. |
[10] | LONAPPAN L, ROUISSI T, |
[11] | LI G L, SHEN B X, LI F K, et al. Elemental mercury removal using biochar pyrolyzed from municipal solid waste[J]. Fuel Processing Technology, 2015, 133: 43-50. |
[12] | LU X W, JORDAN B, BERGE N D. Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques[J]. Waste Management, 2012, 32(7): 1353-1365. |
[13] | FAN S S, WANG Y, WANG Z, et al. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism[J]. Journal of Environmental Chemical Engineering, 2017, 5(1): 601-611. |
[14] | 陈倩倩. 宁波市不同区分类垃圾理化特性与温室气体排放特征研究[D]. 杭州: 浙江大学, 2018. |
[15] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析方法: GB/T 212-2008[S]. 北京: 中国标准出版社, 2008. |
[16] | GHAEDI M, NASAB A G, KHODADOUST S, et al. Characterization of zinc oxide nanorods loaded on activated carbon as cheap and efficient adsorbent for removal of methylene blue[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 986-993. |
[17] | 刘雪成. 城市污泥与谷壳制备吸附剂及其对染料废水处理的研究[D]. 武汉: 武汉科技大学, 2014. |
[18] | BHATNAGAR A, HOGLAND W, MARQUES M, et al. An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219: 499-511. |
[19] | SAKA C. BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 21-24. |
[20] | GUAN B H, YU J, FU H L, et al. Improvement of activated sludge dewaterability by mild thermal treatment in CaCl2 solution[J]. Water Research, 2012, 46(2): 425-432. |
[21] | LAURENT J, CASELLAS M, PONS M N, et al. Flocs surface functionality assessment of sonicated activated sludge in relation with physico-chemical properties[J]. Ultrasonics Sonochemistry, 2009, 16(4): 488-494. |
[22] | FAN S S, TANG J, WANG Y, et al. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism[J]. Journal of Molecular Liquids, 2016, 220: 432-441. |
[23] | LENG L J, YUAN X Z, HUANG H J, et al. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption[J]. Applied Surface Science, 2015, 346: 223-231. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:862
HTML全文浏览数:802
PDF下载数:74
施引文献:0
出版历程
刊出日期:2019-06-03
-->
城镇有机垃圾热解生物炭对水中亚甲基蓝的吸附
高豆豆1,,郭敏辉2,
王侃1,
于洁1,,
叶丁璐1,
祝怡臻1
1.宁波大学建筑工程与环境学院,宁波 315211
2.浙江大学环境工程系,杭州 310058
基金项目: 宁波市科技计划项目2015C110001 浙江省自然科学基金资助项目Y19E080023 国家级高等学校大学生创新创业训练计划项目201811646019 浙江省大学生科技创新活动计划2018R405038宁波市科技计划项目(2015C110001) 浙江省自然科学基金资助项目(Y19E080023) 国家级高等学校大学生创新创业训练计划项目(201811646019) 浙江省大学生科技创新活动计划(2018R405038) 宁波大学王宽诚基金资助项目
关键词: 城镇垃圾/
热解/
生物炭/
吸附/
亚甲基蓝
摘要:热解是一项极具前景的城镇垃圾资源化处理技术,对热解产物的合理利用有助于热解技术的推广应用。以1套垃圾分选、热解工程设备产生的生物炭为原料,研究生物炭对水中亚甲基蓝的吸附效果,分析吸附动力学和吸附等温线;通过红外光谱、比表面积、孔径及微观形貌的表征方法阐释其吸附机理,并进行经济性分析。结果表明,生物炭对亚甲基蓝的去除率随生物炭投加量的增加而增加,随亚甲基蓝溶液初始浓度的增加而降低,在pH为9时达到最高。生物炭对亚甲基蓝的吸附过程符合准二级动力学方程和Langmuir吸附等温线方程,为单分子层吸附,最大吸附量为35.7 mg·g-1。生物炭具有较强的非均质性,其对亚甲基蓝的吸附主要发生在微孔中,且亚甲基蓝与生物炭表面的O—H、NH3+、NH2、C—O等基团发生了作用,说明亚甲基蓝在生物炭表面的吸附受生物炭孔结构和化学性质2个方面的影响。生物炭的制备过程可产生446~708元·t-1的经济效益,作为废水处理的吸附剂具有较好的应用前景。
English Abstract
Adsorption of aqueous methylene blue by biochar pyrolyzed from municipal solid waste
GAO Doudou1,,GUO Minhui2,
WANG Kan1,
YU Jie1,,
YE Dinglu1,
ZHU Yizhen1
1.Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China
2.Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
Keywords: municipal solid waste/
pyrolysis/
biochar/
adsorption/
methylene blue
Abstract:Pyrolysis is a promising technology for municipal solid waste treatment and recycling. The reasonable utilization of pyrolysis products will be conducive to the generalization and application of pyrolysis technology. The adsorption performance of aqueous methylene blue by biochar derived from a set of industrial municipal solid waste sorting and pyrolysis equipment was studied, and the adsorption kinetics, isotherms were analyzed. Furthermore, the adsorption mechanisms were elucidated by infrared spectrum, specific surface area, pore size and micro-morphology, and the economic analysis was also provided. The results showed that the removal efficiency of methylene blue by biochar increased with the increase of biochar dosage, while decreased with the increase of the initial concentration of methylene blue, and the maximum removal efficiency occurred at pH 9. The adsorption process can be well fitted by the quasi-second-order kinetic equation and Langmuir adsorption isotherm, which indicated that above adsorption process could be described by monolayer adsorption with the maximum adsorption capacity of 35.7 mg·g-1. The biochar was strongly heterogeneous. The adsorption of methylene blue mainly occurred in the micropores of biochar, and methylene blue reacted with functional groups of biochar, such as O—H, NH3+, NH2, and C—O, indicating that the adsorption of methylene blue is simultaneously affected by the pore structure and chemical properties of biochar. The production of biochar from municipal solid waste can yield a profit of 446~708 yuan·t-1, thus as an adsorbent for wastewater treatment, this biochar has a good application prospect.