严锐钊1,
洪家兴1,
章可卿1,
苗涵倩1,
朱方伦1
1.浙江农林大学环境与资源学院,杭州 311300
基金项目: 国家自然科学基金资助项目21607132
浙江省自然科学基金资助项目LQ14B070007国家自然科学基金资助项目(21607132)
浙江省自然科学基金资助项目(LQ14B070007)
Synchronous removal of nitrate and cadmium from groundwater using permeable reactive barrier technology
LI Mei1,,YAN Ruizhao1,
HONG Jiaxing1,
ZHANG Keqing1,
MIAO Hanqian1,
ZHU Fanglun1
1.School of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou 311300, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为评估可渗透反应墙(PRB)技术同步去除复合污染地下水中硝酸盐和重金属的可行性,选取蛭石、活性炭、固定化微生物为PRB反应介质,采用批实验和柱实验在不同填装方式及不同水力停留时间等条件下,考察PRB技术对硝酸盐和Cd2+的同步去除效果。结果表明:PRB介质为蛭石或活性炭与固定化微生物组合型填料时,Cd2+对PRB去除复合污染水体中的硝酸盐影响甚微,可实现高效的同步去除;当进水NO3-N浓度为50 mg·L-1、Cd2+浓度为10 mg·L-1时,活性炭与固定化微生物的组合型反应介质对NO3-N和Cd2+去除率分别可达93.13%和95.80%,蛭石与固定化微生物的组合型反应介质对NO3-N和Cd2+去除率分别可达92.70%和99.50%,经处理后的水质可达到地下水Ⅲ级质量标准(GB/T 14848-2017)。以蛭石+固定化微生物、活性炭+固定化微生物作为反应介质的PRB技术可以实现NO3-N和Cd2+的同步去除,该技术可应用于处理硝酸盐和重金属复合污染地下水。
关键词: 地下水污染修复/
可渗透反应墙/
硝酸盐/
镉/
同步去除/
固定化微生物
Abstract:In order to assess the feasibility of synchronous removal of nitrate and heavy metal in groundwater using permeable reactive barrier (PRB), vermiculite, activated carbon, and immobilized microorganisms were selected as the medium for PRB reaction. The synchronous removal efficiency of nitrate and cadmium using PRB technology was investigated under various filling methods and hydraulic retention times by batch experiments and column experiments. The results showed that Cd2+ had slight effect on the removal of NO3-N, and synchronous and high effective removal of Cd2+ and NO3-N occurred when the vermiculite or activated carbon and immobilized microorganism were selected as the PRB media. When the concentrations of NO3-N and Cd2+ were 50 mg·L-1 and 10 mg·L-1, respectively, the removal rates were up to 93.13% (NO3-N) and 95.80% (Cd2+) for PRB with combined medium of activated carbon and immobilized microorganisms, and up to 92.70%(NO3-N) and 99.50%(Cd2+) for PRB with combined medium of vermiculite and immobilized microorganism. The PRB treated water quality could meet the third level of national quality standard of underground water (GB/T 14848-2017). Therefore, the PRB technology with the combined reaction medium of vermiculite and immobilized microorganism or activated carbon and immobilized microorganism has a satisfactory synchronous removal efficiency of NO3-N and Cd2+ in groundwater, which can be applied to treat the groundwater polluted by nitrate and heavy metals.
Key words:groundwater pollution remediation/
permeable reactive barrier (PRB)/
nitrate/
cadmium/
synchronous removal/
immobilized microorganism.
[1] | 2017中国生态环境状况公报[J]. 环境经济, 2018(11): 10-11. |
[2] | 张倩倩. 生物渗透反应墙治理地下水硝酸盐固相碳源优化[D]. 杭州: 浙江农林大学, 2015. |
[3] | 孟凡生, 王业耀, 张星星. 零价铁PRB修复硝酸盐和铬复合污染地下水[J]. 环境科学研究, 2012, 25(11): 1279-1284. |
[4] | 祁宝川, 韩志勇, 陈吉祥. PRB修复重金属污染地下水的反应介质研究进展[J]. 应用化工, 2017, 46(4): 749-754. |
[5] | 刘瑞, 高艳娇. PRB填料的研究进展[J]. 工业安全与环保, 2017, 43(6): 5-7. |
[6] | 贾汉忠, 宋存义, 李晖. 纳米零价铁处理地下水污染技术研究进展[J]. 化工进展, 2009, 28(11): 2028-2034. |
[7] | GUERIN T F, HORNER S, MCGOVERN T, et al. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater [J]. Water Research, 2002, 36(1): 15-24. |
[8] | LUDWIG R D, MCGREGOR R G, BLOWS D W. A permeable reactive barrier for treatment of heavy metals[J]. Ground Water, 2002, 40(1): 59-66. |
[9] | 石巍巍, 王丹一, 张春伟. 地下水重金属污染中PRB修复技术的运用[J]. 环境与发展, 2018, 30(4): 123-125. |
[10] | BLOWES D W, PTACEK C J, BENNER S G, et al. Treatment of inorganic contaminants using permeable reactive barriers[J]. Journal of Contaminant Hydrology, 2000, 45(1/2): 123-137. |
[11] | BARTON C S, STEWART D I, MORRIS K. Performance of three resin-based materials for treating uranium-contaminated groundwater within a PRB [J]. Journal of Hazardous Materials, 2004, 116(3): 191-204. |
[12] | THIRUVENKATACHARI R, VIGNESWARAN S, NAIDU R. Permeable reactive barrier foe groundwater remediation[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(2): 145-156. |
[13] | CUNDY A B, HOPKINSON L, WHITBY R L D. Use of iron-based technologies in contaminated land and groundwater remediation: A review [J]. Science of the Total Environment, 2008, 400(1/2/3): 42-51. |
[14] | 蓝梅, 董萌 , 吴宏举. 地下水硝酸盐氮污染原位修复研究进展[J]. 工业水处理, 2015, 35(8): 15-17. |
[15] | 王冬. 固定化微生物修复氯苯污染地下水的研究[D]. 长春: 吉林大学, 2012. |
[16] | 张静进. 海藻酸钠包埋活性炭与细菌吸附重金属的研究[D]. 长沙: 湖南大学, 2011. |
[17] | 李雪梅, 廖立兵, 李瑞, 等. 氯化铵-乙醇法测定蛭石的阳离子交换容量[J]. 岩矿测试, 2008, 27(3): 204-206. |
[18] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[19] | 曹攀. 光合细菌脱氮除磷机理及应用研究[D]. 成都: 四川师范大学, 2010. |
[20] | 康亚楠. 颗粒活性炭-超滤一体化净水柱处理微污染水的研究[D]. 太原: 太原理工大学, 2018. |
[21] | 董敏慧. 蛭石人工湿地脱氮机理研究[D]. 长沙: 中南林业科技大学, 2007. |
[22] | 王晖. 硫自养反硝化结合生物活性炭技术处理硝酸氮污染物的研究[D]. 上海: 上海交通大学, 2011. |
[23] | 胡光锁, 李政一. 废水处理中蛭石的应用研究进展[J]. 北京工商大学学报(自然科学版), 2006, 24(3): 13-16. |
[24] | 王桂芳, 包明峰, 韩泽志. 活性炭对水中重金属离子去除效果的研究[J]. 环境保护科学, 2004, 30(2): 26-29. |
[25] | 刘慧莹. 活性炭与KDF联用去除食用水重金属污染研究[D]. 长沙: 湖南农业大学, 2013. |
[26] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848-2017[S]. 北京: 中国环境科学出版社, 2017. |
[27] | 田建强. 反硝化过程中亚硝酸积累的影响因素[J]. 有色冶金设计与研究, 2008, 29(3): 42-44. |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1314
HTML全文浏览数:1112
PDF下载数:395
施引文献:0
出版历程
刊出日期:2019-04-15
-->
PRB技术同步去除地下水中硝酸盐和镉
李梅1,,严锐钊1,
洪家兴1,
章可卿1,
苗涵倩1,
朱方伦1
1.浙江农林大学环境与资源学院,杭州 311300
基金项目: 国家自然科学基金资助项目21607132 浙江省自然科学基金资助项目LQ14B070007国家自然科学基金资助项目(21607132) 浙江省自然科学基金资助项目(LQ14B070007)
关键词: 地下水污染修复/
可渗透反应墙/
硝酸盐/
镉/
同步去除/
固定化微生物
摘要:为评估可渗透反应墙(PRB)技术同步去除复合污染地下水中硝酸盐和重金属的可行性,选取蛭石、活性炭、固定化微生物为PRB反应介质,采用批实验和柱实验在不同填装方式及不同水力停留时间等条件下,考察PRB技术对硝酸盐和Cd2+的同步去除效果。结果表明:PRB介质为蛭石或活性炭与固定化微生物组合型填料时,Cd2+对PRB去除复合污染水体中的硝酸盐影响甚微,可实现高效的同步去除;当进水NO3-N浓度为50 mg·L-1、Cd2+浓度为10 mg·L-1时,活性炭与固定化微生物的组合型反应介质对NO3-N和Cd2+去除率分别可达93.13%和95.80%,蛭石与固定化微生物的组合型反应介质对NO3-N和Cd2+去除率分别可达92.70%和99.50%,经处理后的水质可达到地下水Ⅲ级质量标准(GB/T 14848-2017)。以蛭石+固定化微生物、活性炭+固定化微生物作为反应介质的PRB技术可以实现NO3-N和Cd2+的同步去除,该技术可应用于处理硝酸盐和重金属复合污染地下水。
English Abstract
Synchronous removal of nitrate and cadmium from groundwater using permeable reactive barrier technology
LI Mei1,,YAN Ruizhao1,
HONG Jiaxing1,
ZHANG Keqing1,
MIAO Hanqian1,
ZHU Fanglun1
1.School of Environmental and Resource Sciences, Zhejiang A & F University, Hangzhou 311300, China
Keywords: groundwater pollution remediation/
permeable reactive barrier (PRB)/
nitrate/
cadmium/
synchronous removal/
immobilized microorganism
Abstract:In order to assess the feasibility of synchronous removal of nitrate and heavy metal in groundwater using permeable reactive barrier (PRB), vermiculite, activated carbon, and immobilized microorganisms were selected as the medium for PRB reaction. The synchronous removal efficiency of nitrate and cadmium using PRB technology was investigated under various filling methods and hydraulic retention times by batch experiments and column experiments. The results showed that Cd2+ had slight effect on the removal of NO3-N, and synchronous and high effective removal of Cd2+ and NO3-N occurred when the vermiculite or activated carbon and immobilized microorganism were selected as the PRB media. When the concentrations of NO3-N and Cd2+ were 50 mg·L-1 and 10 mg·L-1, respectively, the removal rates were up to 93.13% (NO3-N) and 95.80% (Cd2+) for PRB with combined medium of activated carbon and immobilized microorganisms, and up to 92.70%(NO3-N) and 99.50%(Cd2+) for PRB with combined medium of vermiculite and immobilized microorganism. The PRB treated water quality could meet the third level of national quality standard of underground water (GB/T 14848-2017). Therefore, the PRB technology with the combined reaction medium of vermiculite and immobilized microorganism or activated carbon and immobilized microorganism has a satisfactory synchronous removal efficiency of NO3-N and Cd2+ in groundwater, which can be applied to treat the groundwater polluted by nitrate and heavy metals.