删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多组学技术应用于化学品风险评估的研究进展

本站小编 Free考研考试/2021-12-30

魏若瑾1,2,
李济彤1,
常静1,
杨璐1,2,
潘一帆1,2,
王会利1,,,
朱莉飞3
1. 中国科学院生态环境研究中心环境生物技术重点实验室, 北京 100085;
2. 中国科学院大学, 北京 100049;
3. 北京市水产科学研究所, 北京 100086
作者简介: 魏若瑾(1995-),女,学士,研究方向为生态毒理学,E-mail:rjwei_st@rcees.ac.cn.
通讯作者: 王会利,huiliwang@rcees.ac.cn ;
基金项目: 公益性行业(农业)科研专项(201503108)


中图分类号: X171.5


Multi-omics Advances in Chemicals Risk Assessment

Wei Ruojin1,2,
Li Jitong1,
Chang Jing1,
Yang Lu1,2,
Pan Yifan1,2,
Wang Huili1,,,
Zhu Lifei3
1. Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Beijing Fisheries Research Institute, Beijing 100086, China
Corresponding author: Wang Huili,huiliwang@rcees.ac.cn ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(67)
相关文章
施引文献
资源附件(0)
访问统计

摘要:随着进入到环境中的化学品种类和数量日益增加,化学品风险评估面临着越来越大的挑战。传统的化学品风险评估方法依赖于动物实验,无法对大量化学品的毒性进行高效检验与预测,并且缺少对机制的研究。多组学技术是多种高通量组学技术的联合应用,主要包括基因组学、转录组学、蛋白质组学和代谢组学等,可以更加快速、准确地分析化学品毒性,预测化学品潜在风险。随着毒理机制研究的不断深入,生物信息数据的大量收集,以及数据处理软件的持续改进,多组学在化学品风险评估中必将起到越来越重要的作用。本文综述了应用于化学品风险评估中的主要组学技术、研究现状以及所面临的挑战,为未来的研究和发展方向提供参考。
关键词: 基因组学/
转录组学/
蛋白质组学/
代谢组学/
风险评估

Abstract:With the increasing variety and quantity of chemicals entering into the environment, chemical risk assessment is meeting more and more challenges. The traditional risk assessment methods for chemicals mainly rely on animal experiments. However, the traditional method can not test and predict the chemical toxicity efficiently and the toxic mechanism is still lacking. Multi-omics technology is the joint application of a variety of high-throughput omics technologies, including genomics, transcriptomics, proteomics and metabolomics. Multi-omics can analyze chemical toxicity more quickly and accurately and predict the potential risks of chemicals. With the comprehensive development of toxicological mechanism, the collection of biological information data and the continuous improvement of data processing software, multi-omics will play an increasingly important role in chemical risk assessment. In this paper, the main omics techniques applied in chemical risk assessment, research status and challenges are summarized to provide references for future research and development.
Key words:genomics/
transcriptomics/
proteomics/
metabolomics/
risk assessment.

加载中
Wang H, Yan Z G, Li H, et al. Progress of environmental management and risk assessment of industrial chemicals in China[J]. Environmental Pollution, 2012, 165:174-181
Judson R, Richard A, Dix D J, et al. The toxicity data landscape for environmental chemicals[J]. Environmental Health Perspectives, 2009, 117(5):685-695
Ankley G T, Bennett R S, Erickson R J, et al. Adverse outcome pathways:A conceptual framework to support ecotoxicology research and risk assessment[J]. Environmental Toxicology and Chemistry, 2010, 29(3):730-741
Bradbury S P, Feijtel T C J, Leeuwen C J V. Peer reviewed:Meeting the scientific needs of ecological risk assessment in a regulatory context[J]. Environmental Science & Technology, 2004, 38(23):463A-470A
Gibb S. Toxicity testing in the 21st century:A vision and a strategy[J]. Reproductive Toxicology, 2008, 25(1):136-138
毛曼菲, 岳思青, 赵美蓉. 基于多组学技术的农药致毒机制研究进展[J]. 农药学学报, 2019, 21(5-6):823-830 Mao M F, Yue S Q, Zhao M R. Advances in pesticide poisoning mechanism based on multi-omics[J]. Chinese Journal of Pesticide Science, 2019, 21(5-6):823-830(in Chinese)
Chen Z. Prospects for the Chinese Human Genome Project (HGP) at the beginning of next century[J]. Progress in Natural Seience, 2000, 10(3):172-175
Moreno L F, Vicente V A, de Hoog S. Black yeasts in the omics era:Achievements and challenges[J]. Medical Mycology, 2018, 56(suppl1):32-41
Barah P, Bones A M. Multidimensional approaches for studying plant defence against insects:From ecology to omics and synthetic biology[J]. Journal of Experimental Botany, 2015, 66(2):479-493
McShane L M, Cavenagh M M, Lively T G, et al. Criteria for the use of omics-based predictors in clinical trials[J]. Nature, 2013, 502(7471):317-320
Kuska B. Beer, bethesda, and biology:How "genomics" came into being[J]. Journal of the National Cancer Institute, 1998, 90(2):93
Wayne R. Omic Science[M]//Plant Cell Biology. Elsevier, 2019:414
Dulbecco R. A turning point in cancer research:Sequencing the human genome[J]. Science, 1986, 231(4742):1055-1056
李伟, 印莉萍. 基因组学相关概念及其研究进展[J]. 生物学通报, 2000, 35(11):1-3Li W, Yin L P. Concepts and research advances on genomics[J]. Bulletin of Biology, 2000, 35(11):1-3(in Chinese)
Oberemm A, Onyon L, Gundert-Remy U. How can toxicogenomics inform risk assessment?[J]. Toxicology and Applied Pharmacology, 2005, 207(2 Supplement):592-598
Maxam A M, Gilbert W. A new method for sequencing DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(2):560-564
Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 74(12):5463-5467
Voelkerding K V, Dames S A, Durtschi J D. Next-generation sequencing:From basic research to diagnostics[J]. Clinical Chemistry, 2009, 55(4):641-658
Wang S, Wong D, Forrest K, et al. Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array[J]. Plant Biotechnology Journal, 2014, 12(6):787-796
Kenneth K, Victor V, Bert V. Characterization of the yeast transcriptome[J]. Cell, 1997, 88(2):243-251
Wang Z, Gerstein M, Snyder M. RNA-Seq:A revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1):57-63
Costa V, Angelini C, De Feis I, et al. Uncovering the complexity of transcriptomes with RNA-Seq[J]. Journal of Biomedicine & Biotechnology, 2010, 2010:1-19
祁云霞, 刘永斌, 荣威恒. 转录组研究新技术:RNA-Seq及其应用[J]. 遗传, 2011, 33(11):42-53Qi Y X, Liu Y B, Rong W H. RNA-Seq and its applications:A new technology for transcriptomics[J]. Hereditas, 2011, 33(11):42-53(in Chinese)
Martyniuk C J, Feswick A, Munkittrick K R, et al. Twenty years of transcriptomics, 17alpha-ethinylestradiol, and fish[J]. General and Comparative Endocrinology, 2020, 286:1-10
Schmitz-Spanke S. Toxicogenomics-What added value do these approaches provide for carcinogen risk assessment?[J]. Environmental Research, 2019, 173:157-164
Tachibana C. Transcriptomics today:Microarrays, RNA-seq, and more[J]. Science, 2015, 349(6247):544-546
Datson N A, Perk J V D, Kloet E R D, et al. Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression[J]. European Journal of Neuroscience, 2001, 14(4):675-689
Hillier L W, Reinke V, Green P, et al. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans[J]. Genome Research, 2009, 19(4):657-666
Wang Z, Gerstein M, Snyder M. RNA-Seq:A revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2010, 10(1):57-63
Wasinger V C, Cordwell S J, Cerpa-Poljak A, et al. Progress with gene-product mapping of the mollicutes:Mycoplasma genitalium[J]. Electrophoresis, 1995, 16(7):1090-1094
刘嘉, 李冬, 王徐, 等. 蛋白质组学的研究进展[J]. 现代医药卫生, 2019, 35(9):1380-1384
Merrick B A. The Human Proteome Organization (HUPO) and environmental health[J]. Environmental Health Perspectives Toxicogenomics, 2003, 111(6):797-801
Anderson L, Seilhamer J. A comparison of selected mRNA and protein abundances in human liver[J]. Electrophoresis, 1997, 18:533-537
Suman S, Mishra S, Shukla Y. Toxicoproteomics in human health and disease:An update[J]. Expert Review Proteomics, 2016, 13(12):1073-1089
尹稳, 伏旭, 李平. 蛋白质组学的应用研究进展[J]. 生物技术通报, 2014(1):32-38 Yin W, Fu X, Li P. Application research progress of proteomics[J]. Biotechnology Bulletin, 2014(1):32-38(in Chinese)
Serchi T, Gutleb A C, Miller I. Proteomics in toxicology-Added value or waste of energies?[J]. Journal of Proteomics, 2016, 137:1-2
Graves P R, Haystead T A. Molecular biologist's guide to proteomics[J]. Microbiology and Molecular Biology Reviews, 2002, 66(1):39-63
Hurkman W J, Tanaka C K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis[J]. Plant Physiology, 1986, 81(3):802-806
Aebersold R, Mann M. Mass spectrometry-based proteomics[J]. Nature, 2003, 422(6928):198-207
Bouhifd M, Hartung T, Hogberg H T, et al. Review:Toxicometabolomics[J]. Journal of Applied Toxicology, 2013, 33(12):1365-1383
Nicholson J K, Lindon J C. Metabonomics[J]. Nature, 2008, 455(7216):1054-1056
Roberts L D, Souza A L, Gerszten R E, et al. Targeted metabolomics[J]. Current Protocols in Molecular Biology, 2012, 98(1):1-34
范仕成, 高悦, 张慧贞, 等. 非靶向和靶向代谢组学在药物靶点发现中的应用[J]. 药学进展, 2017, 41(4):263-269Fan S C, Gao Y, Zhang H Z, et al. Untargeted and targeted metabolomics and their applications in discovering drug targets[J]. Progress in Pharmaceutical Sciences, 2017, 41(4):263-269(in Chinese)
Chai T, Cui F, Yin Z, et al. Chiral PCB 91 and 149 toxicity testing in embryo and larvae (Danio rerio):Application of targeted metabolomics via UPLC-MS/MS[J]. Scientific Reports, 2016, 6:1-10
Koek M M, Jellema R H, Greef J V D, et al. Quantitative metabolomics based on gas chromatography mass spectrometry:Status and perspectives[J]. Metabolomics, 2011, 7(3):307-328
Zhang H, Wang L, Hou Z, et al. Metabolomic profiling reveals potential biomarkers in esophageal cancer progression using liquid chromatography-mass spectrometry platform[J]. Biochemical and Biophysical Research Communications, 2017, 491(1):119-125
Zyromski N J, Mathur A, Gowda G A, et al. Nuclear magnetic resonance spectroscopy-based metabolomics of the fatty pancreas:Implicating fat in pancreatic pathology[J]. Pancreatology, 2009, 9(4):410-419
Aguayo-Orozco A, Taboureau O, Brunak S. The use of systems biology in chemical risk assessment[J]. Current Opinion in Toxicology, 2019, 15:48-54
陈润生. 生物信息学[J]. 生物物理学报, 1999, 15(1):5-12
Mayer B. Bioinformatics for Omics Date[M]. New York:Humana Press, 2011:5
European Food Safety Authority (EFSA). Omics in Risk Assessment:State of the Art and Next Steps[R]. Parma:EFSA, 2018
张金梅, 高月, 郑雅梅. 美国化学品危险性预测技术的发展及启示[J]. 中国安全科学学报, 2019, 29(1):150-154Zhang J M, Gao Y, Zheng Y M. Development of chemicals hazardousness prediction technology in United States and its enlightenment[J]. China Safety Science Journal, 2019, 29(1):150-154(in Chinese)
Simoes T, Novais S C, Natal-da-Luz T, et al. An integrative omics approach to unravel toxicity mechanisms of environmental chemicals:Effects of a formulated herbicide[J]. Scientific Reports, 2018, 8(1):1-12
Chatterjee N, Yang J, Atluri R, et al. Amorphous silica nanoparticle-induced perturbation of cholesterol homeostasis as a function of surface area highlights safe-by-design implementation:An integrated multi-omics analysis[J]. Royal Society of Chemistry Advances, 2016, 6(73):68606-68614
Gavin A. Investigating the mechanisms of silver nanoparticle toxicity in Daphnia magna:A multi-omics approach[D]. Birmingham:University of Birmingham, 2014:180-191
Gonzalez-Ruiz V, Schvartz D, Sandstrom J, et al. An integrative multi-omics workflow to address multifactorial toxicology experiments[J]. Metabolites, 2019, 9(4):79-93
Wilmes A, Limonciel A, Aschauer L, et al. Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress[J]. Journal of Proteomics, 2013, 79:180-194
Grison S, Kereselidze D, Cohen D, et al. Applying a multiscale systems biology approach to study the effect of chronic low-dose exposure to uranium in rat kidneys[J]. International Journal of Radiation Biology, 2019, 95(6):737-752
European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). Omics and Risk Assessment Science:Workshop Report No. 25[R]. Brussel:ECETOC, 2013
Sauer U G, Deferme L, Gribaldo L, et al. The challenge of the application of omics technologies in chemicals risk assessment:Background and outlook[J]. Regulatory Toxicology and Pharmacology, 2017, 91(Suppl 1):S14-S26
Corvi R, Madia F, Guyton K Z, et al. Moving forward in carcinogenicity assessment:Report of an EURL ECVAM/ESTIV workshop[J]. Toxicology in Vitro, 2017, 45(Pt 3):278-286
Shi L, Reid L H, Jones W D, et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements[J]. Nature Biotechnology, 2006, 24(9):1151-1161
Shi L, Campbell G, Jones W D, et al. The MicroArray Quality Control (MAQC)-Ⅱ study of common practices for the development and validation of microarray-based predictive models[J]. Nature Biotechnology, 2010, 28(8):827-838
Su Z, Łabaj P P, Li S, et al. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium[J]. Nature Biotechnology, 2014, 32(9):903-914
Maher B. ENCODE:The human encyclopaedia[J]. Nature, 2012, 489:46-48
Luyten L J, Saenen N D, Janssen B G, et al. Air pollution and the fetal origin of disease:A systematic review of the molecular signatures of air pollution exposure in human placenta[J]. Environmental Research, 2018, 166:310-323
Yao X, Cao D, Wang F, et al. An overview of omics approaches to characterize the effect of perfluoroalkyl substances in environmental health[J]. Trends in Analytical Chemistry, 2019, 121:1-8

相关话题/技术 北京 环境 生物技术 检验