删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

反映我国空间分异特性的多介质环境逸度模型的构建及十溴二苯醚的归趋模拟

本站小编 Free考研考试/2021-12-30

鄢世阳1,
王中钰1,
陈景文1,,,
李雪花1,
于洋2,
林军2
1. 工业生态与环境工程教育部重点实验室, 大连理工大学环境学院, 大连 116024;
2. 生态环境部固体废物与化学品管理技术中心, 北京 100029
作者简介: 鄢世阳(1994-),男,硕士,研究方向为计算毒理学,E-mail:theloon@hotmail.com.
通讯作者: 陈景文,jwchen@dlut.edu.com ;
基金项目: 国家重点研发计划项目(2018YFE0110700,2018YFC1801604)


中图分类号: X171.5


Development of Spatially Differentiated Multimedia Environmental Fugacity Model to Simulate Fate of Decabromodiphenyl Ether in China

Yan Shiyang1,
Wang Zhongyu1,
Chen Jingwen1,,,
Li Xuehua1,
Yu Yang2,
Lin Jun2
1. Key Laboratory of Industrial Ecology and Environmental Engineering(MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China;
2. Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing 100029, China
Corresponding author: Chen Jingwen,jwchen@dlut.edu.com ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(61)
相关文章
施引文献
资源附件(0)
访问统计

摘要:化学品的浓度水平、排放量都与具体的地理位置密切相关,发展具有空间分异特性的多介质环境逸度模型,可更加准确地描述化学品的多介质环境归趋。本研究基于我国的区域环境属性,建立了50 km×50 km分辨率的空间分异Ⅲ级多介质环境逸度模型。以阻燃剂十溴二苯醚(BDE-209)为例,模拟和预测了BDE-209在我国的多介质环境中的分布。结果表明,上海、山东和广东等东部地区大气与土壤中BDE-209浓度较高,陕西、山西等中西部地区水与沉积物内BDE-209浓度较高。BDE-209在大气、水、土壤和沉积物中的平均浓度分别为2.02×10-6 μg·m-3、6.64×10-6 μg·m-3、1.93 μg·kg-1和3.65×10 μg·kg-1。土壤和沉积物是BDE-209主要的汇,其含量占其环境总量的98.65%。所构建的具有空间分异特性的多介质环境逸度模型,适用于持久性有毒化学物质在我国环境中的归趋模拟,有助于化学品的环境风险预测与管理。
关键词: 十溴二苯醚/
环境暴露模拟/
逸度模型/
地理信息系统/
空间分异模型

Abstract:The concentration levels and emissions of synthetic chemicals are dependent on the geographical locations. It is of importance to develop multimedia environmental fugacity models with spatial differentiation, since the models can accurately predict multimedia environmental fate of chemicals. In this study, based on the regional environmental properties of China, a level Ⅲ multimedia environmental fugacity model with spatial resolution of 50 km×50 km was developed. A flame retardant decabromodiphenyl ether (BDE-209) was selected for the case study. Distribution of BDE-209 in the multimedia environment in China was predicted. The model predicted that concentrations of BDE-209 were high in air and soil in the eastern regions of Shanghai, Shandong and Guangdong; as well as in water and sediments in the central and western regions of Shaanxi and Shanxi. The average concentrations of BDE-209 in air, water, soil and sediments were predicted to be 2.02×10-6 μg·m-3, 6.64×10-6 μg·m-3, 1.93 μg·kg-1 and 3.65×10 μg·kg-1, respectively. Soil and sediments are the main sink of BDE-209, accounting for 98.65% of the total mass in the simulated region. The multimedia environmental fugacity model with spatial differentiation characteristics is suitable for fate simulation of persistent toxic chemicals in China, which is beneficial to the prediction and management of chemical risks.
Key words:decabromodiphenyl ether/
environmental exposure simulation/
fugacity model/
GIS gridding/
spatial differentiation.

加载中
American Chemical Society. CAS Registry. (2020-04-26). https://www.cas.org/support/documen-tation/chemical-substances
Wang Z, Walker G W, Muir D C G, et al. Toward a global understanding of chemical pollution:A first comprehensive analysis of national and regional chemical inventories[J]. Environmental Science & Technology, 2020, 54(5):2575-2584
陈景文, 全燮. 环境化学[M]. 大连:大连理工大学出版社, 2009:9-11
贺莹莹, 李雪花, 陈景文. 多介质环境模型在化学品暴露评估中的应用与展望[J]. 科学通报, 2014, 59(32):3130-3143He Y Y, Li X H, Chen J W, et al. Use of multimedia environmental models in chemical exposure assessments[J]. Science Bulletin, 2014, 59(32):3130-3143(in Chinese)
青达罕, 许宜平, 王子健. 基于环境逸度模型的化学物质暴露与风险评估研究进展[J]. 生态毒理学报, 2018, 13(6):13-29Qing D, Xu Y P, Wang Z J. The evolution of environmental fugacity models on chemical exposure and risk assessment[J]. Asian Journal of Ecotoxicology, 2018, 13(6):13-29(in Chinese)
张少轩, 张冰, 张芊芊, 等. 化学品环境归趋模型及应用[J]. 环境化学, 2019, 38(8):1684-1707Zhang S X, Zhang B, Zhang Q Q. Chemical environmental fate models and their applications[J]. Environmental Chemistry, 2019, 38(8):1684-1707(in Chinese)
Mackay D, Paterson S. Evaluating the multimedia fate of organic chemicals:A level Ⅲ fugacity model[J]. Environmental Science & Technology, 1991, 25(3):427-436
Mackay D, Paterson S, Cheung B, et al. Evaluating the environmental behavior of chemicals with a levelⅢ fugacity model[J]. Chemosphere, 1985, 14(3):335-374
孙慧超. 大连市区部分多环芳烃(PAHs)的来源和多介质环境行为[D]. 大连:大连理工大学, 2005:9-97 Sun H C. Source and multimedia environmental behavior of PAHs in Dalian urban area[D]. Dalian:Dalian University of Technology, 2005:9-97(in Chinese)
齐丽, 周志广, 许鹏军, 等. 北京地区二噁英类的环境多介质迁移和归趋模拟[J]. 环境科学研究, 2012, 25(5):543-548Qi L, Zhou Z G, Xu P J, et al. Simulation of the transfer and fate of PCDD/Fs in Beijing using a steady-state multimedia fugacity model[J]. Research of Environmental Sciences, 2012, 25(5):543-548(in Chinese)
Zhang Q Q, Ying G G, Chen Z F, et al. Multimedia fate modeling and risk assessment of a commonly used azole fungicide climbazole at the river basin scale in China[J]. Science of the Total Environment, 2015, 520:39-48
许晶晶, 张圣虎, 刘济宁, 等. 逸度模型在化学品暴露预测中的应用与展望[J]. 环境科学与技术, 2014, 37(11):94-98Xu J J, Zhang S H, Liu J N, et al. Application and prospects of fugacity models in chemicals exposure prediction[J]. Enuivonmental Science and Technology, 2014, 37(11):94-98(in Chinese)
刘世杰, 吕永龙, 史雅娟. 持久性有机污染物环境多介质空间分异模型研究进展[J]. 生态毒理学报, 2011, 6(2):129-137Liu S J, Lv Y L, Shi Y J. Advances in spatially explicit environmental multimedia fate models of POPs[J]. Asian Journal of Ecotoxicology, 2011, 6(2):129-137(in Chinese)
Hung H, Lee S C, Wania F, et al. Measuring and simulating atmospheric concentration trends of polychlorinated biphenyls in the Northern Hemisphere[J]. Atmospheric Environment, 2005, 39(35):6502-6512
Zhu Y, Tao S, Price O R, et al. Environmental distributions of benzo pyrene in China:Current and future emission reduction scenarios explored using a spatially explicit multimedia fate model[J]. Environmental Science & Technology, 2015, 49(23):13868-13877
Zhu Y, Price O R, Kilgallon J, et al. A multimedia fate model to support chemical management in China:A case study for selected trace organics[J]. Environmental Science & Technology, 2016, 50(13):7001-7009
Xu S, Wania F. Chemical fate, latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment:A modeling assessment[J]. Chemosphere, 2013, 93(5):835-843
Ji X, Ding J, Xie X, et al. Pollution status and human exposure of decabromodiphenyl ether (BDE-209) in China[J]. ACS Omega, 2017, 2(7):3333-3348
北京中智林信息技术有限公司. 2018-2025年中国十溴联苯醚行业市场深度研究及投资战略咨询报告[R]. 北京:北京中智林信息技术有限公司, 2019
Li Y F, Qiao L N, Ren N Q, et al. Decabrominated diphenyl ethers (BDE-209) in Chinese and global air:Levels, gas/particle partitioning, and long-range transport:Is long-range transport of BDE-209 really governed by the movement of particles?[J]. Environmental Science & Technology, 2017, 51(2):1035-1042
Söderström G, Sellström U, de Wit C A, et al. Photolytic debromination of decabromodiphenyl ether (BDE 209)[J]. Environmental Science & Technology, 2004, 38(1):127-132
Webster T F, Harrad S, Millette J R, et al. Identifying transfer mechanisms and sources of decabromodiphenyl ether (BDE 209) in indoor environments using environmental forensic microscopy[J]. Environmental Science & Technology, 2009, 43(9):3067-3072
Zhang L, Yin S, Zhao Y, et al. Polybrominated diphenyl ethers and indicator polychlorinated biphenyls in human milk from China under the Stockholm Convention[J]. Chemosphere, 2017, 189:32-38
国家地球系统科学数据中心. 中国地理新型数据. (2019-04-05). http://www.geodata.cn
Yang J, Huang D, Zhang L, et al. Multiple-life-stage probabilistic risk assessment for the exposure of Chinese population to PBDEs and risk managements[J]. Science of the Total Environment, 2018, 643:1178-1190
Choi J, Jang Y C, Kim J G. Substance flow analysis and environmental releases of PBDEs in life cycle of automobiles[J]. Science of the Total Environment, 2017, 574:1085-1094
Hodges J E N, Vamshi R, Holmes C, et al. Combining high-resolution gross domestic product data with home and personal care product market research data to generate a subnational emission inventory for Asia[J]. Integrated Environmental Assessment and Management, 2014, 10(2):237-246
Scheringer M, Wegmann F, Fenner K, et al. Investigation of the cold condensation of persistent organic pollutants with a global multimedia fate model[J]. Environmental Science & Technology, 2000, 34(9):1842-1850
Zhan Y, Sun J, Luo Y, et al. Estimating emissions and environmental fate of di-(2-ethylhexyl) phthalate in Yangtze River Delta, China:Application of inverse modeling[J]. Environmental Science & Technology, 2016, 50(5):2450-2458
Zhu Y, Price O R, Tao S, et al. A new multimedia contaminant fate model for China:How important are environmental parameters in influencing chemical persistence and long-range transport potential?[J]. Environment International, 2014, 69:18-27
Huang Y, Sun X, Liu M, et al. A multimedia fugacity model to estimate the fate and transport of polycyclic aromatic hydrocarbons (PAHs) in a largely urbanized area, Shanghai, China[J]. Chemosphere, 2019, 217:298-307
Cao H, Tao S, Xu F, et al. Multimedia fate model for hexachlorocyclohexane in Tianjin, China[J]. Environmental Science & Technology, 2004, 38(7):2126-2132
Zhu Y, Snape J, Jones K, et al. Spatially explicit large-scale environmental risk assessment of pharmaceuticals in surface water in China[J]. Environmental Science & Technology, 2019, 53(5):2559-2569
Mackay D. Multimedia Environmental Models:The Fugacity Approach[M]. CRC press, 2001:177-180
中国土地勘测规划院. 全国城镇土地利用数据汇总成果分析报告. (2015-12-29). http://www.mnr.gov.cn/sj/sjfw/td_19262/201808/t20180802_2157598.html
National Library of Medicine. PubChem. (2019-05-28). https://pubchem.ncbi.nlm.nih.gov/
Earnshaw M, Jones K, Sweetman A. A first European scale multimedia fate modelling of BDE-209 from 1970 to 2020[J]. Environment International, 2015, 74:71-81
Edwards F G, Egemen E, Brennan R, et al. Ranking of toxics release inventory chemicals using a level Ⅲ fugacity model and toxicity[J]. Water Science and Technology, 1999, 39(10):83-90
Rogers C C M, Beven K J, Morris E M, et al. Sensitivity analysis, calibration and predictive uncertainty of the Institute of Hydrology Distributed Model[J]. Journal of Hydrology, 1985, 81(1):179-191
Thompson K M, Burmaster D E, Crouch E A C. Monte Carlo technique for quantitative uncertainty analysis in public health risk assessments[J]. Risk Analysis, 1992, 12(1):53-63
Shi T, Chen S J, Luo X J, et al. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China[J]. Chemosphere, 2009, 74(7):910-916
Liu P, Ren D, Du G, et al. Accumulation of polybrominated diphenyl ethers (PBDEs) in muds nails (Cipangopaludina cahayensis) did not increase with age[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 91(1):1-5
Wu F, Guo J, Chang H, et al. Polybrominated diphenyl ethers and decabromodiphenylethane in sediments from twelve lakes in China[J]. Environmental Pollution, 2012, 162:262-268
Tang Z, Huang Q, Cheng J, et al. Polybrominated diphenyl ethers in soils, sediments, and human hair in a plastic waste recycling area:A neglected heavily polluted area[J]. Environmental Science & Technology, 2014, 48(3):1508-1516
Zhou P, Lin K, Zhou X, et al. Distribution of polybrominated diphenyl ethers in the surface sediments of the Taihu Lake, China[J]. Chemosphere, 2012, 88(11):1375-1382
Wang D G, Alaee M, Sverko E, et al. Analysis and occurrence of emerging chlorinated and brominated flame retardants in surficial sediment of the Dalian costal area in China[J]. Journal of Environmental Monitoring, 2011, 13(11):3104-3110
Wu M H, Tang L, Xu G, et al. Polybrominated diphenyl ethers in surface sediments from principal watersheds of Shanghai, China:Levels, distribution, influencing factors, and risk assessment[J]. Environmental Science and Pollution Research, 2013, 20(4):2651-2660
Pan X, Tang J, Li J, et al. Levels and distributions of PBDEs and PCBs in sediments of the Bohai Sea, North China[J]. Journal of Environmental Monitoring, 2010, 12(6):1234-1241
Liu P Y, Chen X R, Zhao Y X, et al. Changes of polybrominated diphenyl ether concentrations in ducks with background exposure level and time[J]. Chemosphere, 2015, 118:253-260
Wang X, Xi B, Huo S, et al. Polybrominated diphenyl ethers occurrence in major inflowing rivers of Lake Chaohu (China):Characteristics, potential sources and inputs to lake[J]. Chemosphere, 2013, 93(8):1624-1631
Zou M Y, Ran Y, Gong J, et al. Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China:Occurrence, inventory, and fate[J]. Environmental Science & Technology, 2007, 41(24):8262-8267
Yu L H, Luo X J, Wu J P, et al. Biomagnification of higher brominated PBDE congeners in an urban terrestrial food web in North China based on field observation of prey deliveries[J]. Environmental Science & Technology, 2011, 45(12):5125-5131
Wu M H, Pei J C, Zheng M, et al. Polybrominated diphenyl ethers (PBDEs) in soil and outdoor dust from a multi-functional area of Shanghai:Levels, compositional profiles and interrelationships[J]. Chemosphere, 2015, 118:87-95
Chen D, Bi X, Zhao J, et al. Pollution characterization and diurnal variation of PBDEs in the atmosphere of an E-waste dismantling region[J]. Environmental Pollution, 2009, 157(3):1051-1057
He W, Qin N, He Q S, et al. Atmospheric PBDEs at rural and urban sites in central China from 2010 to 2013:Residual levels, potential sources and human exposure[J]. Environmental Pollution, 2014, 192:232-243
Jin J, Wang Y, Yang C, et al. Human exposure to polybrominated diphenyl ethers at production area, China[J]. Environmental Toxicology and Chemistry, 2010, 29(5):1031-1035
Wu H, Jin J, Wang Y, et al. Comparative study of the level and distribution of polybrominated diphenyl ethers and new brominated flame retardants in the atmosphere of typical urban[J]. Environmental Science, 2014, 35(4):1230-1237
Fu X, Wang J, Zhou X, et al. Tree bark as a passive air sampler to indicate atmospheric polybrominated diphenyl ethers (PBDEs) in southeastern China[J]. Environmental Science and Pollution Research, 2014, 21(12):7668-7677
Yu Y X, Pang Y P, Li C, et al. Concentrations and seasonal variations of polybrominated diphenyl ethers (PBDEs) in in-and out-house dust and human daily intake via dust ingestion corrected with bioaccessibility of PBDEs[J]. Environment International, 2012, 42:124-131
Abbasi G, Li L, Breivik K. Global historical stocks and emissions of PBDEs[J]. Environmental Science & Technology, 2019, 53(11):6330-6340
O'Driscoll K, Robinson J, Chiang W S, et al. The environmental fate of polybrominated diphenyl ethers (PBDEs) in western Taiwan and coastal waters:Evaluation with a fugacity-based model[J]. Environmental Science and Pollution Research, 2016, 23(13):13222-13234

相关话题/环境 空间 北京 生态 土壤