删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

母体暴露环境浓度盐酸四环素对F1代斑马鱼胚胎骨骼发育的影响

本站小编 Free考研考试/2021-12-30

齐澈力木格,
尹晓宇,
李嘉伟,
董文静,
陈浩,
王欢,
楚文庆,
杨景峰,
于建华,,
董武,
内蒙古民族大学动物科学技术学院, 内蒙古自治区毒物监控及毒理学重点实验室, 通辽 028000
作者简介: 齐澈力木格(1990-),女,硕士研究生,研究方向为毒理学,E-mail:qichelimuge@163.com.
通讯作者: 于建华,yihyjh926@163.com ; 董武,dongwu@imun.edu.cn
基金项目: 国家自然科学基金资助项目(21567019,81360508);内蒙古民族大学特色交叉学科群建设项目(MDXK008);内蒙古自治区自然科学基金资助项目(2018MS08033);内蒙古草原英才2020年度滚动支持(董武);内蒙古毒物监测及毒理学重点实验室开放项目(MDK2019074,MDK2019076);内蒙古民族大学研究生科研创新项目(NMDSS1860);蒙药研发国家地方联合工程研究中心开放基金资助项目(MDK2019051)


中图分类号: X171.5


Parental Tetracycline Hydrochloride Exposure and Resultant Offspring Cartilage Toxicity

Qi Chelimuge,
Yin Xiaoyu,
Li Jiawei,
Dong Wenjing,
Chen Hao,
Wang Huan,
Chu Wenqing,
Yang Jingfeng,
Yu Jianhua,,
Dong Wu,
College of Animal Science and Technology, Inner Mongolia University for Nationalities, Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao 028000, China
Corresponding authors: Yu Jianhua,yihyjh926@163.com ; Dong Wu,dongwu@imun.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(44)
相关文章
施引文献
资源附件(0)
访问统计

摘要:抗生素被广泛应用于兽药和饲料添加剂中,尤其是四环素等广谱抗生素,长期滥用于养殖业中。四环素是目前用量最大、应用范围最广泛的一种抗生素。抗生素在体内蓄积,或者以原型随粪便排入环境中,造成环境污染。实验用斑马鱼为模式动物来评价低浓度四环素对斑马鱼下一代(F1)发育的毒性影响。选取4月龄亲代斑马鱼(F0),分别给予0.1、1和100 μg·L-1盐酸四环素(tetracycline hydrochloride,TCH)处理30 d后,实施交配后获得F1代斑马鱼胚胎。结果表明,F1代胚胎随母体TCH暴露浓度的升高而孵化率降低、畸形率和死亡率增加。同时斑马鱼幼鱼下颌骨长度、下颌弓长度变长、下颌骨宽度和舌骨角长度缩短。进一步检测与幼鱼骨骼发育相关基因表达,发现TCH抑制了runx1、sox9a、sox10col2α1a mRNA的表达。以上研究结果表明,TCH的残留和污染可能会影响斑马鱼胚胎的发育,尤其是对胚胎软骨发育有影响。
关键词: 盐酸四环素/
斑马鱼胚胎/
F1代/
毒性/
软骨发育

Abstract:Antibiotics are widely used as veterinary drugs and feed additives, especially for broad-spectrum antibiotics such as tetracycline, which have been abused in the breeding industry. Tetracycline is the antibiotics with the largest dosage and the widest application. Antibiotics accumulate in the body or are excreted into the environment via feces as a prototype, causing environmental pollution. This experiment used zebrafish as a model organism to evaluate the effects of low concentration of tetracycline on the transgenerational (F1) zebrafish. Parent zebrafish (F0, approximantely 4-month-old) were exposed to 0.1, 1 and 100 μg·L-1 of tetracycline hydrochloride (TCH) for 30 d. The F1 generation zebrafish embryos were obtained. The results showed that the F1 generation embryos had a decreased hatching rate and an increased malformation rate and mortality rate, all of which were concentration-dependent. In addition, the zebrafish juvenile had longer mandible and mandibular arch and more narrow mandible and shorter hyoid bone. Furthermore, transcriptional expression of runx1, sox9a, sox10 and col2α1a (genes related to skeletal development of juvenile fish) were inhibited by exposure to TCH. This study demonstrates that TCH showed a transgenerational effect by affecting the development of zebrafish embryos, especially the development of embryonic cartilage.
Key words:tetracycline hydrochloride/
zebrafish embryo/
F1 generation/
toxicity/
cartilage development.

加载中
Faria M, Lopez M A, Fernandez-Sanjuan M, et al. Comparative toxicity of single and combined mixtures of selected pollutants among larval stages of the native freshwater mussels (Unio elongatulus) and the invasive zebra mussel (Dreissena polymorpha)[J]. Science of the Total Environment, 2010, 408(12):2452-2458
Boxall A B, Fogg L A, Blackwell P A, et al. Veterinary medicines in the environment[J]. Reviews of Environmental Contamination and Toxicology, 2004, 180:1-91
魏维芮. 浅谈我国抗生素的滥用问题及对策[J]. 化工管理, 2018(3):92, 94
Ben W, Qiang Z, Adams C, et al. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2008, 1202(2):173-180
徐永刚, 宇万太, 马强, 等. 环境中抗生素及其生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10(3):11-27Xu Y G, Yu W T, Ma Q, et al. The antibiotic in environment and its ecotoxicity:A review[J]. Asian Journal of Ecotoxicology, 2015, 10(3):11-27(in Chinese)
雷慧宁. 规模化猪场废水处理工艺中抗生素和重金属残留及其生态风险[D]. 上海:华东师范大学, 2016:26 Lei H N. Antibiotic and heavy metal residues and ecological risks in large-scale pig farm wastewater treatment process[D]. Shanghai:East China Normal University, 2016:26(in Chinese)
Yu X, Wu Y, Deng M, et al. Tetracycline antibiotics as PI3K inhibitors in the Nrf2-mediated regulation of antioxidative stress in zebrafish larvae[J]. Chemosphere, 2019, 226:696-703
Meyer M T, Bumgarner J E, Varns J L, et al. Use of radioimmunoassay as a screen for antibiotics in confined animal feeding operations and confirmation by liquid chromatography/mass spectrometry[J]. Science of the Total Environment, 2000, 248(2-3):181-187
Keerthisinghe T P, Wang F, Wang M, et al. Long-term exposure to TET increases body weight of juvenile zebrafish as indicated in host metabolism and gut microbiome[J]. Environment Internationnal, 2020, 139:105705
Qiu W, Sun J, Fang M, et al. Occurrence of antibiotics in the main rivers of Shenzhen, China:Association with antibiotic resistance genes and microbial community[J]. Science of the Total Environment, 2019, 653:334-341
Yuan J, Ni M, Liu M, et al. Occurrence of antibiotics and antibiotic resistance genes in a typical estuary aquaculture region of Hangzhou Bay, China[J]. Marine Pollution Bulletin, 2019, 138:376-384
Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3435-3440
Franco G C, Kajiya M, Nakanishi T, et al. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo[J]. Experimental Cell Research, 2011, 317(10):1454-1464
Kim Y, Kim J, Lee H, et al. Tetracycline analogs inhibit osteoclast differentiation by suppressing MMP-9-mediated histone H3 cleavage[J]. International Journal of Molecular Sciences, 2019, 20(16):4038
Dorman G, Cseh S, Hajdu I, et al. Matrix metalloproteinase inhibitors:A critical appraisal of design principles and proposed therapeutic utility[J]. Drugs, 2010, 70(8):949-964
Vandooren J, Knoops S, Aldinucci Buzzo J L, et al. Differential inhibition of activity, activation and gene expression of MMP-9 in THP-1 cells by azithromycin and minocycline versus bortezomib:A comparative study[J]. PLoS One, 2017, 12(4):e0174853
Dong W, Hinton D E, Kullman S W. TCDD disrupts hypural skeletogenesis during medaka embryonic development[J]. Toxicological Sciences, 2012, 125(1):91-104
Zhang G, Eames B F, Cohn M J. Chapter 2. Evolution of vertebrate cartilage development[J]. Current Topics in Developmental Biology, 2009, 86:15-42
Karsenty G. Transcriptional control of skeletogenesis[J]. Annual Review of Genomics and Human Genetics, 2008, 9:183-196
Flores M V, Lam E Y, Crosier P, et al. A hierarchy of Runx transcription factors modulate the onset of chondrogenesis in craniofacial endochondral bones in zebrafish[J]. Developmental Dynamics, 2006, 235(11):3166-3176
Enomoto H, Furuichi T, Zanma A, et al. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro[J]. Journal of Cell Science, 2004, 117:417-425
Bell D M, Leung K K, Wheatley S C, et al. SOX9 directly regulates the type-Ⅱ collagen gene[J]. Nature Genetics, 1997, 16(2):174-178
Lefebvre V, Huang W, Harley V R, et al. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(Ⅱ) collagen gene[J]. Molecular and Cellular Biology, 1997, 17(4):2336-2346
Sekiya I, Tsuji K, Koopman P, et al. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6[J]. The Journal of Biological Chemistry, 2000, 275(15):10738-10744
Bridgewater L C, Lefebvre V, de Crombrugghe B. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer[J]. The Journal of Biological Chemistry, 1998, 273(24):14998-15006
Goldring M B, Peng H, Ijiri K, et al. ESE1 inhibits COL2A1 promoter activity via Sox9 and CBP[J]. Matrix Biology, 2006, 25(S1):S90
何加发. 诺氟沙星对稀有鮈鲫雌性亲本胚胎及子代骨骼发育的影响[D]. 杨凌:西北农林科技大学, 2019:1 He J F. The influence of embryo and bone development treated with norfloxacin in rare minnow Gobiocypris rarus offspring[D]. Yangling:Northwest A&F University, 2019:1(in Chinese)
Crump J G, Swartz M E, Eberhart J K, et al. Moz-dependent Hox expression controls segment-specific fate maps of skeletal precursors in the face[J]. Development, 2006, 133(14):2661-2669
Dutton J R, Antonellis A, Carney T J, et al. An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10[J]. BMC Developmental Biology, 2008, 8:105
Halpern M E, Hatta K, Amacher S L, et al. Genetic interactions in zebrafish midline development[J]. Developmental Biology, 1997, 187(2):154-170
Renn J, Winkler C, Schartl M, et al. Zebrafish and medaka as models for bone research including implications regarding space-related issues[J]. Protoplasma, 2006, 229(2-4):209-214
Brannen K C, Panzica-Kelly J M, Danberry T L, et al. Development of a zebrafish embryo teratogenicity assay and quantitative prediction model[J]. Birth Defects Research Part B, Developmental and Reproductive Toxicology, 2010, 89(1):66-77
Dong W, Wang F, Fang M, et al. Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China[J]. Ecotoxicology and Environmental Safety, 2019, 173:339-346
Osman A G, Wuertz S, Mekkawy I A, et al. Lead induced malformations in embryos of the African catfish Clarias gariepinus (Burchell, 1822)[J]. Environmental Toxicology, 2007, 22(4):375-389
梁伟放, 赵建国, 柳贤德. 四环素对斑马鱼胚胎发育及CAT和SOD活性的影响[J]. 热带农业工程, 2017, 41(1):17-20Liang W F, Zhao J G, Liu X D, et al. Effect of tetracycline on zebrafish embryonic development and CAT and SOD activities[J]. Tropical Agricultural Engineering, 2017, 41(1):17-20(in Chinese)
Jonsson M E, Kubota A, Timme-Laragy A R, et al. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish[J]. Toxicology and Applied Pharmacology, 2012, 265(2):166-174
Yabe K, Satoh H, Ishii Y, et al. Early pathophysiologic feature of arthropathy in juvenile dogs induced by ofloxacin, a quinolone antimicrobial agent[J]. Veterinary Pathology, 2004, 41(6):673-681
Goto K, Yabe K, Suzuki T, et al. Chondrotoxicity and toxicokinetics of novel quinolone antibacterial agents DC-159a and DX-619 in juvenile rats[J]. Toxicology, 2010, 276(2):122-127
Bi W, Deng J M, Zhang Z, et al. Sox9 is required for cartilage formation[J]. Nature Genetics, 1999, 22(1):85-89
Akiyama H, Chaboissier M C, Martin J F, et al. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6[J]. Genes & Development, 2002, 16(21):2813-2828
Cheah K S, Au P K, Lau E T, et al. The mouse Col2a-1 gene is highly conserved and is linked to Int-1 on chromosome 15[J]. Mammalian Genome, 1991, 1(3):171-183
Wood A, Ashhurst D E, Corbett A, et al. The transient expression of type Ⅱ collagen at tissue interfaces during mammalian craniofacial development[J]. Development, 1991, 111(4):955-968
Li S W, Khillan J, Prockop D J. The complete cDNA coding sequence for the mouse pro alpha 1(Ⅰ) chain of type Ⅰ procollagen[J]. Matrix Biology, 1995, 14(7):593-595
Cheah K S, Lau E T, Au P K, et al. Expression of the mouse alpha 1(Ⅱ) collagen gene is not restricted to cartilage during development[J]. Development, 1991, 111(4):945-953

相关话题/胚胎 内蒙古民族大学 生态 内蒙古 环境