删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

FTIR在环境毒理学研究中的应用

本站小编 Free考研考试/2021-12-30

胡立新1,2,
熊倩1,2,
陈晓雯3,
赵佳慧1,2,
赵建亮1,2,
刘有胜1,2,
应光国1,2,,
1. 华南师范大学环境学院, 广州 510006;
2. 广东省化学品污染与环境安全重点实验室&环境理论化学教育部重点实验室, 华南师范大学, 广州 510006;
3. 国家环境保护环境污染健康风险评价重点实验室, 生态环境部华南环境科学研究所, 广州 510655
作者简介: 胡立新(1993-),男,博士,研究方向为基于生物光谱技术的毒性测试,E-mail:lixin.hu@m.scnu.edu.cn.
通讯作者: 应光国,guangguo.ying@m.scnu.edu.cn
基金项目: 国家自然科学基金资助项目(41907343)


中图分类号: X171.5


Application of Fourier Transform Infrared Spectroscopy in Environmental Toxicology

Hu Lixin1,2,
Xiong Qian1,2,
Chen Xiaowen3,
Zhao Jiahui1,2,
Zhao Jianliang1,2,
Liu Yousheng1,2,
Ying Guangguo1,2,,
1. School of Environment, South China Normal University, Guangzhou 510006, China;
2. Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety&MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China;
3. State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
Corresponding author: Ying Guangguo,guangguo.ying@m.scnu.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(52)
相关文章
施引文献
资源附件(0)
访问统计

摘要:傅里叶变换红外光谱(FTIR)作为一种常用化学分析方法,与多元统计分析方法相结合,可以识别生物分子的变化情况。红外光谱具有操作简单、快速、灵敏、样品无损等特点,逐渐在环境监测和污染物毒性效应方面被广泛应用。通过研究生物体受到外界胁迫时生物大分子在结构上的变化情况,可从分子水平揭示污染物的毒性效应及其毒性机制。笔者从FTIR在环境毒理学中的研究进展、技术优势,以及其在毒理学中的应用等方面进行了综述。
关键词: 红外光谱/
生物大分子/
环境污染物/
环境毒理学/
分子指纹特征

Abstract:As a conventional chemical analysis tool, Fourier transform infrared spectroscopy (FTIR) combined with multivariate statistical analysis can identify the changes of biomolecules in biota. FTIR has been widely used in environmental monitoring and toxic effects of chemical pollutants because of its simple, rapid, sensitive and non-destructive characteristics. By analyzing the structural alterations of biomacromolecules under external stress, the toxic effects and mechanisms of pollutants can be revealed at the biochemical level. In this paper, research status, technical advantages, applications and future prospect of FTIR in environmental toxicology are reviewed.
Key words:FTIR/
bio-macromolecules/
environmental pollutant/
environmental toxicology/
molecular fingerprint characteristics.

加载中
Baker M J, Trevisan J, Bassan P, et al. Using Fourier transform IR spectroscopy to analyze biological materials[J]. Nature Protocols, 2014, 9(8):1771-1791
Martin F L, Kelly J G, Llabjani V, et al. Distinguishing cell types or populations based on the computational analysis of their infrared spectra[J]. Nature Protocols, 2010, 5(11):1748-1760
Gautam R, Vanga S, Ariese F, et al. Review of multidimensional data processing approaches for Raman and infrared spectroscopy[J]. EPJ Techniques and Instrumentation, 2015, 2:8
Movasaghi Z, Rehman S, ur Rehman D I. Fourier transform infrared (FTIR) spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2008, 43(2):134-179
Trevisan J, Angelov P P, Carmichael P L, et al. Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets:Current practices to future perspectives[J]. The Analyst, 2012, 137(14):3202-3215
Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimica et Biophysica Sinica, 2007, 39(8):549-559
Yang H Y, Yang S N, Kong J L, et al. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy[J]. Nature Protocols, 2015, 10(3):382-396
Duan P, Liu B S, Morais C L M, et al. 4-nonylphenol effects on rat testis and Sertoli cells determined by spectrochemical techniques coupled with chemometric analysis[J]. Chemosphere, 2019, 218:64-75
Staroszczyk H, Sztuka K, Wolska J, et al. Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films:FT-IR study[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2014, 117:707-712
Miller L M, Bourassa M W, Smith R J. FTIR spectroscopic imaging of protein aggregation in living cells[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(10):2339-2346
Byler D M, Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra[J]. Biopolymers, 1986, 25(3):469-487
Wong T S, Roccatano D, Zacharias M, et al. A statistical analysis of random mutagenesis methods used for directed protein evolution[J]. Journal of Molecular Biology, 2006, 355(4):858-871
Evans M S, Sander I M, Clark P L. Cotranslational folding promotes β-helix formation and avoids aggregation in vivo[J]. Journal of Molecular Biology, 2008, 383(3):683-692
Suat K, Jois S. Design of β-turn based therapeutic agents[J]. Current Pharmaceutical Design, 2003, 9(15):1209-1224
Guo Y L, Huang W C, Wu Y F, et al. Conformational changes of proteins and oil molecules in fish oil/water interfaces of fish oil-in-water emulsions stabilized by bovine serum albumin[J]. Food Chemistry, 2019, 274:402-406
Zhang F Q, Huang Q, Yan J W, et al. Assessment of the effect of trichostatin A on HeLa cells through FT-IR spectroscopy[J]. Analytical Chemistry, 2015, 87(4):2511-2517
Chen L, Holman H Y N, Hao Z, et al. Synchrotron infrared measurements of protein phosphorylation in living single PC12 cells during neuronal differentiation[J]. Analytical Chemistry, 2012, 84(9):4118-4125
Yehuda S, Rabinovitz S, Carasso R L, et al. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane[J]. Neurobiology of Aging, 2002, 23(5):843-853
Nadtochenko V A, Rincon A G, Stanca S E, et al. Dynamics of E. coli membrane cell peroxidation during TiO2 photocatalysis studied by ATR-FTIR spectroscopy and AFM microscopy[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2005, 169(2):131-137
Sinclair R G, McKay A F, Myers G S, et al. The infrared absorption spectra of unsaturated fatty acids and esters[J]. Journal of the American Chemical Society, 1952, 74(10):2578-2585
Dias M, Naik A, Guy R H, et al. In vivo infrared spectroscopy studies of alkanol effects on human skin[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(3):1171-1175
Dreissig I, Machill S, Salzer R, et al. Quantification of brain lipids by FTIR spectroscopy and partial least squares regression[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2009, 71(5):2069-2075
Goates C Y, Knutson K. Enhanced permeation of polar compounds through human epidermis. Ⅰ. Permeability and membrane structural changes in the presence of short chain alcohols[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1994, 1195(1):169-179
Mignolet A, Mathieu V, Goormaghtigh E. HTS-FTIR spectroscopy allows the classification of polyphenols according to their differential effects on the MDA-MB-231 breast cancer cell line[J]. Analyst, 2017, 142(8):1244-1257
Furnkranz A, Leitinger N. Regulation of inflammatory responses by oxidized phospholipids:Structure-function relationships[J]. Current Pharmaceutical Design, 2004, 10(8):915-921
Goormaghtigh E, Raussens V, Ruysschaert J M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1999, 1422(2):105-185
Ahmed M K, Amiama F, Sealy E A. Unique spectral features of DNA infrared bands of some microorganisms[J]. Spectroscopy, 2009, 23(5-6):291-297
Taillandier E, Liquier J. Infrared Spectroscopy of DNA[M]//DNA Structures Part A:Synthesis and Physical Analysis of DNA. Amsterdam:Elsevier, 1992:307-335
Zhang F Q, Huang Q, Yan J W, et al. Histone acetylation induced transformation of B-DNA to Z-DNA in cells probed through FT-IR spectroscopy[J]. Analytical Chemistry, 2016, 88(8):4179-4182
Palaniappan P R, Vijayasundaram V. Arsenic-induced biochemical changes in Labeo rohita kidney:An FTIR study[J]. Spectroscopy Letters, 2009, 42(5):213-218
Senthamilselvan D, Chezhian A, Kabilan N, et al. FTIR study of nickel and mercury induced biochemical changes in the muscles tissues of Lates calcarifer[J]. International Journal of Environmental Sciences, 2012, 2(4):1976-1983
Kardas M, Gozen A G, de Severcan F. FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria[J]. Aquatic Toxicology, 2014, 155:15-23
Llabjani V, Hoti V, Pouran H M, et al. Bimodal responses of cells to trace elements:Insights into their mechanism of action using a biospectroscopy approach[J]. Chemosphere, 2014, 112:377-384
Gupta A D, Karthikeyan S. Individual and combined toxic effect of nickel and chromium on biochemical constituents in E. coli using FTIR spectroscopy and principle component analysis[J]. Ecotoxicology and Environmental Safety, 2016, 130:289-294
Hu X J, Liu Z X, Wang Y D, et al. Synchrotron FTIR spectroscopy reveals molecular changes in Escherichia coli upon Cu2+ exposure[J]. Nuclear Science and Techniques, 2016, 27(3):1-8
Dao L, Beardall J, Heraud P. Characterisation of Pb-induced changes and prediction of Pb exposure in microalgae using infrared spectroscopy[J]. Aquatic Toxicology, 2017, 188:33-42
Barber J L, Walsh M J, Hewitt R, et al. Low-dose treatment with polybrominated diphenyl ethers (PBDEs) induce altered characteristics in MCF-7 cells[J]. Mutagenesis, 2006, 21(5):351-360
Llabjani V, Jones K C, Thomas G O, et al. Polybrominated diphenyl ether-associated alterations in cell biochemistry as determined by attenuated total reflection Fourier-transform infrared spectroscopy:A comparison with DNA-reactive and/or endocrine-disrupting agents[J]. Environmental Science & Technology, 2009, 43(9):3356-3364
Llabjani V, Trevisan J, Jones K C, et al. Binary mixture effects by PBDE congeners (47, 153, 183, or 209) and PCB congeners (126 or 153) in MCF-7 cells:Biochemical alterations assessed by IR spectroscopy and multivariate analysis[J]. Environmental Science & Technology, 2010, 44(10):3992-3998
Pang W, Li J, Ahmadzai A A, et al. Identification of benzopyrene-induced cell cycle-associated alterations in MCF-7 cells using infrared spectroscopy with computational analysis[J]. Toxicology, 2012, 298(1-3):24-29
Gorrochategui E, Lacorte S, Tauler R, et al. Perfluoroalkylated substance effects in Xenopus laevis A6 kidney epithelial cells determined by ATR-FTIR spectroscopy and chemometric analysis[J]. Chemical Research in Toxicology, 2016, 29(5):924-932
Cakmak G, Togan I, de Severcan F. 17β-estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy:A comparative study with nonylphenol[J]. Aquatic Toxicology, 2006, 77(1):53-63
Johnson C M, Pleshko N, Achary M, et al. Rapid and sensitive screening of 17β-estradiol estrogenicity using Fourier transform infrared imaging spectroscopy (FT-IRIS)[J]. Environmental Science & Technology, 2014, 48(8):4581-4587
Dakhakhni T H, Raouf G A, Qusti S Y. Evaluation of the toxic effect of the herbicide 2,4-D on rat hepatocytes:An FT-IR spectroscopic study[J]. European Biophysics Journal, 2016, 45(4):311-320
Strong R J, Halsall C J, Jones K C, et al. Infrared spectroscopy detects changes in an amphibian cell line induced by fungicides:Comparison of single and mixture effects[J]. Aquatic Toxicology, 2016, 178:8-18
Xin X Y, Huang G H, Liu X, et al. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.:A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy[J]. Environmental Pollution, 2017, 226:12-20
Palaniappan P L, Pramod K S. FTIR study of the effect of nTiO2 on the biochemical constituents of gill tissues of zebrafish (Danio rerio)[J]. Food and Chemical Toxicology, 2010, 48(8-9):2337-2343
Riding M J, Martin F L, Trevisan J, et al. Concentration-dependent effects of carbon nanoparticles in Gram-negative bacteria determined by infrared spectroscopy with multivariate analysis[J]. Environmental Pollution, 2012, 163:226-234
Li J, Strong R, Trevisan J, et al. Dose-related alterations of carbon nanoparticles in mammalian cells detected using biospectroscopy:Potential for real-world effects[J]. Environmental Science & Technology, 2013, 47(17):10005-10011
Novak S, Drobne D, Vaccari L, et al. Effect of ingested tungsten oxide (WOx) nanofibers on digestive gland tissue of Porcellio scaber (Isopoda, Crustacea):Fourier transform infrared (FTIR) imaging[J]. Environmental Science & Technology, 2013, 47(19):11284-11292
Rhiem S, Riding M J, Baumgartner W, et al. Interactions of multiwalled carbon nanotubes with algal cells:Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells[J]. Environmental Pollution, 2015, 196:431-439
Li H, Gao Y, Li C, et al. A comparative study of the antibacterial mechanisms of silver ion and silver nanoparticles by Fourier transform infrared spectroscopy[J]. Vibrational Spectroscopy, 2016, 85:112-121

相关话题/环境 光谱 生物 广州 华南师范大学