李俊杰,
王俊英,
黄沛玲
华侨大学化工学院, 厦门 361021
作者简介: 李玲(1983-),女,博士,讲师,研究方向为环境毒理学,E-mail:liling19830826@hqu.edu.cn.
通讯作者: 李玲,liling19830826@hqu.edu.cn ;
基金项目: 手性有机磷农药水胺硫磷毒理效应的对映体选择性研究(JAT160029)中图分类号: X171.5
Enantiomeric Selectivity of Chiral Pesticide Isocarbophos on Oxidative Stress in Plankton
Li Ling,,Li Junjie,
Wang Junying,
Huang Peiling
College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
Corresponding author: Li Ling,liling19830826@hqu.edu.cn ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:用高效液相色谱(high performance liquid chromatography,HPLC)法对水胺硫磷(isocarbophos,ICP)2个对映体进行拆分与制备,分别以浮游植物水华微囊藻(Microcystis flos-aquae)和浮游动物大型蚤(Daphnia magna)为实验生物,考察了ICP导致2种浮游生物氧化损伤对映体选择性差异。结果显示:除了10-4 mg·L-1和10-3 mg·L-1,10-2~1 mg·L-1的(+)-ICP对水华微囊藻叶绿素a含量表现为抑制作用;而10-4~10-1 mg·L-1的(-)-ICP对水华微囊藻叶绿素a含量表现为促进作用。且在10-4~1 mg·L-1浓度范围内,(+)-ICP使其超氧化物歧化酶(superoxide dismutase,SOD)活性显著下降,且最大下降31.2%,而(-)-ICP未引起SOD活性发生明显变化;(+)-ICP各浓度组诱导水华微囊藻的过氧化氢酶(catalase,CAT)活性的上升程度显著高于(-)-ICP;2个对映体未引起水华微囊藻发生脂质过氧化。此外,ICP对大型蚤的毒性要远远高于水华微囊藻;在1~20 μg·L-1浓度范围内,(+)-ICP未引起大型蚤SOD活性增加,而(-)-ICP则引起大型蚤SOD活性显著增加,且最高增加79.0%;2.5~10 μg·L-1的(+)-ICP诱导大型蚤CAT活性上升而(-)-ICP则导致CAT活性下降;(+)-ICP随着浓度的增加引起明显的脂质过氧化。研究表明,ICP对2种浮游生物的氧化应激均存在对映体选择性差异,且对水华微囊藻和大型蚤的毒性均表现为(+)-ICP>rac-ICP>(-)-ICP,但是其对浮游动物的毒害风险远大于对浮游植物。
关键词: 水胺硫磷/
浮游生物/
氧化应激/
对映体选择性
Abstract:Considering that the involvement of oxidative damage is implicated in the toxicities of various pesticides, the possibility of enantioselective oxidative stress induced by isocarbophos (ICP) on Microcystis flos-aquae and Daphnia magna was investigated in this study. Enantiomeric separation and preparation of ICP were performed on high performance liquid chromatography (HPLC). Our results demonstrate that inhibitory effect on growth of Microcystis flos-aquae on only (+)-ICP 10-2~1 mg·L-1, but not on (+)-ICP concentration of 10-4 and 10-3 mg·L-1. Meanwhile, 10-4~10-1 mg·L-1 of (-)-ICP displays promotion effect on growth of Microcystis flos-aquae. Within (+)-ICP concentration range of 10-4~1 mg·L-1, superoxide dismutase (SOD) activity is significant suppressed. The maximal decrease is shown to be 31.2%. In contrast, (-)-ICP does not cause significant changes in the SOD activity. The promotional effect of (+)-ICP in catalase (CAT) activity is more remarkable than that of the (-)-ICP. However, the two enantiomers do not cause significant lipid peroxidation of Microcystis flos-aquae and Daphnia magna. Furthermore, the toxicity of ICP on Daphnia magna is much higher than that on Microcystis flos-aquae. In concentration range of 1~20μg·L-1, (+)-ICP does not increase the SOD activity of Daphnia magna, while (-)-ICP causes significant increase of the SOD activity of Daphnia magna, with the maximal increase shown to be 79.0%; 2.5~10 μg·L-1 of (+)-ICP induces the CAT activity of Daphnia magna, while the identical concentrations of (-)-ICP lead to a decrease in CAT activity. (+)-ICP significantly increases lipid peroxidation in a concentration-dependent way. These results suggest that ICP induce enantioselective toxicity of plankton mediated by oxidative damage. The toxicity hierarchies of ICP to Microcystis flos-aquae and Daphnia magna are both shown to be (+)-ICP>rac-ICP>(-)-ICP. However, it should be noted that the toxic risk of ICP and its enantiomers for zooplankton are far great than that for phytoplankton.
Key words:isocarbophos/
plankton/
oxidative stress/
enantioselectivity.
Chen Z W, Zou Y Q, Wang J, et al. Phytotoxicity of chiral herbicide bromacil:Enantioselectivity of photosynthesis in Arabidopsis thaliana[J]. Science of the Total Environment, 2016, 548-549:139-147 |
Lin K D, Liu W P, Li L, et al. Single and joint acute toxicity of isocarbophos enantiomers to Daphnia magna[J]. Journal of Agricultural and Food Chemistry, 2008, 56(11):4273-4277 |
Lu D H, Huang L D, Diao J L, et al. Enantioselective toxicological response of the green alga Scenedesmus obliquus to isocarbophos[J]. Chirality, 2012, 24(6):481-485 |
Liu H G, Liu J, Xu L H, et al. Enantioselective cytotoxicity of isocarbophos is mediated by oxidative stress-induced JNK activation in human hepatocytes[J]. Toxicology, 2010, 276(2):115-121 |
朱欣凯. 水胺硫磷对东亚飞蝗的对映选择毒性及其机制研究[D]. 太原:山西大学, 2016:20-21 Zhu X K. Study on the mechanism of the enantioselective toxicity of isocarbophos to Locusta migratoria manilensis (Meyen)[D]. Taiyuan:Shanxi University, 2016:20-21(in Chinese) |
Organization for Economic Co-operation and Development (OECD). Test No. 211:Daphnia magna reproduction test[S]. Paris:OECD, 2012 |
International Organization for Standardization (ISO). IS06341:1996(E):Water quality-determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)-Acute toxicity test[S]. Geneva:ISO, 1996 |
Lyu K, Zhu X X, Wang Q Q, et al. Copper/zinc superoxide dismutase from the Cladoceran Daphnia magna:Molecular cloning and expression in response to different acute environmental stressors[J]. Environmental Science & Technology, 2013, 47(15):8887-8893 |
Kim H, Kim J S, Kim P J, et al. Response of antioxidant enzymes to Cd and Pb exposure in water flea Daphnia magna:Differential metal and age-Specific patterns[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 209:28-36 |
Wang M X, Zhang Y X, Guo P Y. Effect of florfenicol and thiamphenicol exposure on the photosynthesis and antioxidant system of Microcystis flos-aquae[J]. Aquatic Toxicology, 2017, 186:67-76 |
Liang Q Q, Li Y S. A rapid and accurate method for determining protein content in dairy products based on asynchronous-injection alternating merging zone flow-injection spectrophotometry[J]. Food Chemistry, 2013, 141(3):2479-2485 |
Wang X F, Miao J J, Pan L Q, et al. Toxicity effects of p-choroaniline on the growth, photosynthesis, respiration capacity and antioxidant enzyme activities of a diatom, Phaeodactylum tricornutu[J]. Ecotoxicology and Environmental Safety, 2019, 169:654-661 |
Calabreseci E J. Evidence that hormesis represents an "overcompensation" response to a disruption in homeostasis[J]. Ecotoxicology and Environmental Safety, 1999, 42(2):135-137 |
Liu C X, Liu S Z, Diao J L. Enantioselective growth inhibition of the green algae (Chlorella vulgaris) induced by two paclobutrazol enantiomers[J]. Environmental Pollution, 2019, 250:610-617 |
Lu D H, Huang L D, Diao J L, et al. Enantioselective toxicological response of the green alga Scenedesmus obliquus to isocarbophos[J]. Chirality, 2012, 24(6):481-485 |
Smythers A L, Garmany A, Perry N L, et al. Characterizing the effect of poast on Chlorella vulgaris, a non-target organism[J]. Chemosphere, 2019, 219:704-712 |
张钰昆, 巩宁, 车程, 等. 纳米氧化镍颗粒对长牡蛎(Crassostrea gigas)抗氧化防御体系的影响[J]. 生态毒理学报, 2019, 14(2):268-279Zhang Y K, Gong N, Che C, et al. Effects of nickel oxide nanoparticles on antioxidant defense system of Crassostrea gigas[J]. Asian Journal of Ecotoxicology, 2019, 14(2):268-279(in Chinese) |
Cao D J, Shi X D, Li H, et al. Effects of lead on tolerance, bioaccumulation, and antioxidative defense system of green algae, Cladophora[J]. Ecotoxicology and Environmental Safety, 2015, 112:231-237 |
Huang L D, Lu D H, Diao J L, et al. Enantioselective toxic effects and biodegradation of benalaxyl in Scenedesmus obliquus[J]. Chemosphere, 2012, 87(1):7-11 |
黄竻丹. 几种手性农药在栅藻和蝌蚪中的选择性富集及毒性效应研究[D]. 北京:中国农业大学, 2015:57-60 Huang L D. Enantioselective bioaccumulation and toxicity effects of several chiral pesticides on Scenedesmus obliquus and Rana nigromaculata tadpoles[D]. Beijing:China Agricultural University, 2015:57-60(in Chinese) |
方汉孙, 张磊, 段舜山. 有机磷农药敌敌畏对赤潮异弯藻(Heterosigma akashiwo)的毒物刺激效应[J]. 生态环境学报, 2010, 19(5):1025-1029Fang H S, Zhang L, Duan S S. Hormesis effect of organophosphorus pesticide dichlorvos on harmful algal bloom specie Heterosigma akashiwo[J]. Ecology and Environmental Sciences, 2010, 19(5):1025-1029(in Chinese) |
Zhang W J, Cheng C, Chen L, et al. Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa[J]. Chemosphere, 2016, 159:50-57 |
Liu R, Deng Y, Zhang W J, et al. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa[J]. Ecotoxicology and Environmental Safety, 2019, 185:109691 |
Liu H J, Xia Y L, Cai W D, et al. Enantioselective oxidative stress and oxidative damage caused by Rac-and S-metolachlor to Scenedesmus obliquus[J]. Chemosphere, 2017, 173:22-30 |
Fonseca T G, Carriço T, Fernandes E, et al. Impacts of in vivo and in vitro exposures to tamoxifen:Comparative effects on human cells and marine organisms[J]. Environment International, 2019, 129:256-272 |
Hu F, Li L, Wang C, et al. Enantioselective induction of oxidative stress by permethrin in rat adrenal pheochromocytoma (PC12) cells[J]. Environmental Toxicology and Chemistry, 2010, 29(3):683-690 |
Li L, Hu F, Wang C, et al. Enantioselective induction of oxidative stress by acetofenate in rat PC12 cells[J]. Journal of Environmental Sciences, 2010, 22(12):1980-1986 |
Di S S, Cang T, Qi P P, et al. Comprehensive study of isocarbophos to various terrestrial organisms:Enantioselective bioactivity, acute toxicity, and environmental behaviors[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40):10997-11004 |
Huang L D, Lu D H, Zhang P, et al. Enantioselective toxic effects of hexaconazole enantiomers against Scenedesmus obliquus[J]. Chirality, 2012, 24(8):610-614 |