删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

土壤理化性质对外源六价铬植物毒性的影响

本站小编 Free考研考试/2021-12-30

马虹1,
王学东1,,,
李金瓶1,
马义兵2
1. 首都师范大学资源环境与旅游学院, 北京 100048;
2. 澳门科技大学澳门环境研究院, 澳门 999078
作者简介: 马虹(1996-),女,硕士研究生,研究方向为重金属生态毒理学,E-mail:mahonghh@126.com.
通讯作者: 王学东,xdwang@cnu.edu.cn ;
基金项目: 国家自然科学基金资助项目(41877496);澳门特别行政区科学技术发展基金资助项目(档案编号:0159/2019/A3)


中图分类号: X171.5


Influences of Soil Physicochemical Properties on Phytotoxicity of Chromium(Ⅵ) in Freshly Spiked Soils

Ma Hong1,
Wang Xuedong1,,,
Li Jinping1,
Ma Yibing2
1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China;
2. Macau Environmental Research Institute, Macau University of Science and Technology, Macau 999078, China
Corresponding author: Wang Xuedong,xdwang@cnu.edu.cn ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(30)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以我国11种具有代表性的土壤为研究对象,通过外源添加Cr(Ⅵ)进行大麦根伸长毒性测试,以了解土壤理化性质对Cr(Ⅵ)的大麦毒性阈值包括半数效应抑制浓度(EC50)和10%效应抑制浓度(EC10)的影响。结果表明,土壤理化性质对Cr(Ⅵ)的植物毒性有显著影响,通过对数-对数剂量效应模型和刺激效应模型预测EC50值和EC10值,其变化范围分别为8.27~241.34 mg·kg-1和2.87~124.65 mg·kg-1,其最大值和最小值相差分别达到了29.2倍和43.4倍。相关分析结果表明,铁、铝氧化物含量、pH值和有机碳含量与Cr(Ⅵ)对大麦根伸长的毒性阈值相关关系显著(P<0.05),其中,铝氧化物含量和铁氧化物含量分别为控制EC50和EC10最重要的单一因子(R2=0.448、R2=0.429),其次为pH值和有机碳含量。基于相关性因子和Cr(Ⅵ)对大麦的毒性阈值建立了一元和多元线性回归方程,最优方程可以分别解释70.1%的EC50和60.4%的EC10变异,表明利用土壤理化性质建立的模型可以较好地预测土壤外源Cr(Ⅵ)对大麦的毒性阈值。
关键词: 六价铬/
土壤/
植物毒性/
理化性质/
阈值

Abstract:The influence of soil physicochemical properties on toxicity threshold (EC x, x =10,50, the effective concentration causing 10% and 50% inhibition) of added Cr(Ⅵ) to barley root elongation was investigated in 11 representative Chinese soils. The results indicated that the phytotoxicity of Cr(Ⅵ) was affected by soil physicochemical properties significantly. The toxicity thresholds (EC50, EC10), which were calculated by log-logistic curve and Hormetic dose-response model, ranged from 8.27 to 241.34 mg·kg-1 and from 2.87 to 124.65 mg·kg-1, respectively, representing 29.2- and 43.4-fold variation among soils. The results of correlation analysis showed that iron oxide content, aluminum oxide content, pH value and organic carbon content were related to the toxicity threshold of Cr(Ⅵ) to barley root elongation significantly (P<0.05). Aluminum oxide content and iron oxide content were the most important predictors of toxicity thresholds (R2=0.448、 R2=0.429). The unary and multiple regression equations between soil properties and toxicity threshold were developed. When incorporating iron oxide content, aluminum oxide content, pH value and organic carbon content into regression models, 70.1% variance of EC50 and 60.4% variance of EC10 can be explained respectively, which indicated that the toxicity thresholds of added Cr(Ⅵ) can be well predicted by the models based on the main soil physicochemical properties.
Key words:hexavalent chromium/
soil/
phytotoxicity/
physicochemical properties/
threshold.

加载中
何俊昱. 土壤六价铬的污染特性/生物可给性及风险评估[D]. 杭州:浙江大学, 2015:3-4 He J Y. Pollution characteristics, bioavailability and risk assessment of hexavalent chromium in soil[D]. Hangzhou:Zhejiang University, 2015:3-4(in Chinese)
王丹, 魏威, 王松山, 等. 铜/铬单一及复合污染对小白菜种子萌发及根长的生态毒性[J]. 西北农林科技大学学报:自然科学版, 2010, 38(12):63-68Wang D, Wei W, Wang S S, et al. Single and combined toxicity of chromium and copper to seed germination and root elongation of pakchoi (Brasica chinensis) in soils[J]. Journal of Northwest A&F University:Natural Science Edition, 2010, 38(12):63-68(in Chinese)
梁峰, 杨绍贵, 孙成, 等. 六价铬对黄颡鱼仔鱼和稚鱼的急性毒性效应研究[J]. 农业环境科学学报, 2010, 29(9):1665-1669Liang F, Yang S G, Sun C, et al. The acute toxicity of hexavalent chromium on Pelteobagrus fulvidraco fry and fingerling[J]. Journal of Agro-Environment Science, 2010, 29(9):1665-1669(in Chinese)
付平南, 贡晓飞, 罗丽韵, 等. 不同价态铬和土壤理化性质对大麦根系毒性阈值的影响[J]. 环境科学, 2020, 41(5):2398-2405Fu P N, Gong X F, Luo L Y, et al. Toxicity of chromium to root growth of barley as affected by chromium speciation and soil properties[J]. Environmental Science, 2020, 41(5):2398-2405(in Chinese)
于修乐, 马义兵, 孙宗全, 等. 土壤中Cr(Ⅵ)和Cr(Ⅲ)生态毒性的差异性研究[J]. 农业环境科学学报, 2018, 37(11):2522-2531Yu X L, Ma Y B, Sun Z Q, et al. Study on ecotoxicity differences of Cr(Ⅵ) and Cr(Ⅲ) in soils[J]. Journal of Agro-Environment Science, 2018, 37(11):2522-2531(in Chinese)
李宁, 郭雪雁, 陈世宝, 等. 基于大麦根伸长测定土壤Pb毒性阈值、淋洗因子及其预测模型[J]. 应用生态学报, 2015, 26(7):2177-2182Li N, Guo X Y, Chen S B, et al. Toxicity thresholds and predicted model of Pb added to soils with various properties and its leaching factors as determined by barley root-elongation test[J]. Chinese Journal of Applied Ecology, 2015, 26(7):2177-2182(in Chinese)
赵淑婷, 孙在金, 林祥龙, 等. 不同性质土壤中锑对小麦根伸长的毒性阈值及预测模型[J]. 安全与环境学报, 2018, 18(1):380-385Zhao S T, Sun Z J, Lin X L, et al. Toxicity threshold of antimony to wheat root elongation in the different soils and its prediction model[J]. Journal of Safety and Environment, 2018, 18(1):380-385(in Chinese)
Li H F, Gray C, Mico C, et al. Phytotoxicity and bioavailability of cobalt to plants in a range of soils[J]. Chemosphere, 2009, 75(7):979-986
Li B, Zhang H T, Ma Y B, et al. Relationships between soil properties and toxicity of copper and nickel to bok choy and tomato in Chinese soils[J]. Environmental Toxicology and Chemistry, 2013, 32(10):2372-2378
Zhang X Q, Wei D P, Ma Y B, et al. The importance of soil solution chemistry to nickel toxicity on barley root elongation[J]. Chemical Speciation and Bioavailability, 2013, 25(3):152-164
王小庆, 韦东普, 黄占斌, 等. 物种敏感性分布在土壤中镍生态阈值建立中的应用研究[J]. 农业环境科学学报, 2012, 31(1):92-98Wang X Q, Wei D P, Huang Z B, et al. Application of species sensitivity distribution in deriving of ecological thresholds for nickel in soils[J]. Journal of Agro-Environment Science, 2012, 31(1):92-98(in Chinese)
中华人民共和国生态环境部. GB15618-2018土壤环境质量标准[S]. 北京:中国环境出版社,2018 Ministry of Ecology and Environment of the People's Republic of China. GB15618-2018 Environmental Quality Standard for Soils[S]. Beijing:China Environmental Science Press, 2018(in Chinese)
彭叶棉, 杨阳, 侯素霞, 等. 外源六价铬在土壤中的有效性及其小麦毒性效应[J]. 生态环境学报, 2020, 29(2):369-377Peng Y M, Yang Y, Hou S X, et al. The bioavailability of exogenous Cr(Ⅵ) in soils and its toxic effect on wheat[J]. Ecology and Environmental Sciences, 2020, 29(2):369-377(in Chinese)
Sivakumar S, Subbhuraam C V. Toxicity of chromium(Ⅲ) and chromium(Ⅵ) to the earthworm Eisenia fetida[J]. Ecotoxicology and Environmental Safety, 2005, 62:93-98
Lin X L, Sun Z J, Zhao L, et al. Toxicity of exogenous hexavalent chromium to soil-dwelling springtail Folsomia candida in relation to soil properties and aging time[J]. Chemosphere, 2019, 224:734-742
International Organization for Standardization. ISO 11269-1:Soil Quality-Determination of the Effects of Pollutants on Soil Flora-Part 1:Method for the Measurement of Inhibition of Root Growth[S]. Geneva:International Organization for Standardization, 2012
Haanstra L, Doelman P, Oude Voshaar J H. The use of sigmoidal dose response curves in soil ecotoxicological research[J]. Plant and Soil, 1985, 84(2):293-297
Schabenberger O, Tharp B E, Kells J J, et al. Statistical tests for hormesis and effective dosages in herbicide dose response[J]. Agronomy Journal, 1999, 91(4):713-721
王晓南, 刘征涛, 王婉华, 等. 重金属铬(Ⅵ)的生态毒性及其土壤环境基准[J]. 环境科学, 2014, 35(8):3155-3161Wang X N, Liu Z T, Wang W H, et al. Ecotoxicological effect and soil environmental criteria of the heavy metal chromium(Ⅵ)[J]. Environmental Science, 2014, 35(8):3155-3161(in Chinese)
Ding C F, Li X G, Zhang T L, et al. Phytotoxicity and accumulation of chromium in carrot plants and the derivation of soil thresholds for Chinese soils[J]. Ecotoxicology and Environmental Safety, 2014, 108:179-186
王婉玉. 典型铁氧化物对CPS还原稳定化修复Cr(Ⅵ)污染土壤的影响机制[D]. 重庆:重庆大学, 2017:1-3 Wang W Y. Mechanism of the effect of iron oxides on the reductive remediation of Cr(Ⅵ)-contaminated soil with calcium polysulfide[D]. Chongqing:Chongqing University, 2017:1-3(in Chinese)
陈云, 于永鲜, 张金利, 等. 铁氧化物改性黏土对Cr(Ⅵ)的吸附性能研究[J]. 环境科学学报, 2011, 31(5):905-911Chen Y, Yu Y X, Zhang J L, et al. Adsorption of Cr(Ⅵ) by iron oxide-modified clay[J]. Acta Scientiae Circumstantiae, 2011, 31(5):905-911(in Chinese)
Warne M St. J, Heemsbergen D, Stevens D, et al. Modeling the toxicity of copper and zinc salts to wheat in 14 soils[J]. Environmental Toxicology and Chemistry, 2008, 27(4):786-792
Amin A S, Kassem M A. Chromium speciation in environmental samples using a solid phase spectrophotometric method[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2012, 96:541-547
Shahid M, Shamshad S, Rafiq M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system:A review[J]. Chemosphere, 2017, 178:513-533
Martí E, Sierra J, Caliz J, et al. Ecotoxicity of Cr, Cd and Pb on two Mediterranean soils[J]. Archives of Environmental Contamination and Toxicology, 2013, 64:377-387
Ashraf A, Bibi I, Niazi N K, et al. Chromium(Ⅵ) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions[J]. International Journal of Phytoremediation, 2017, 19(7):605-613
李菁乔, 张文静, 秦运琦, 等. 铬在土壤中环境行为及修复研究进展[J]. 江苏农业科学, 2019, 47(12):36-42Li J Q, Zhang W J, Qin Y Q, et al. Research progress on environmental behavior and remediation of chromium in soils[J]. Jiangsu Agricultural Sciences, 2019, 47(12):36-42(in Chinese)
Chen C P, Juang K W, Lin T H, et al. Assessing the phytotoxicity of chromium in Cr(Ⅵ)-spiked soils by Cr speciation using XANES and resin extractable Cr(Ⅲ) and Cr(Ⅵ)[J]. Plant Soil, 2010, 334:299-309
Choppala G, Kunhikrishnan A, Seshadri B, et al. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils[J]. Journal of Geochemical Exploration, 2018, 184:255-260

相关话题/土壤 环境科学 理化 生态 环境