删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

场地土壤重金属镉和铅复合污染毒性阈值的推导及其应用

本站小编 Free考研考试/2021-12-30

马喆1,2,
王美娥1,
霍彦慧1,2,
丁寿康1,2,
谢天1,
陈卫平1
1. 中国科学院生态环境研究中心, 城市与区域国家重点实验室, 北京 100085;
作者简介: 马喆(1994-),女,硕士研究生,研究方向为生态毒理学,E-mail:mazhe18@mails.ucas.ac.cn;985082877@qq.com.
基金项目: 国家重点研发计划项目(2018YFC1800505)


中图分类号: X171.5


Derivation of Toxicity Threshold for Combined Pollution of Cadmium and Lead in Site Soil and Its Application

Ma Zhe1,2,
Wang Meie1,
Huo Yanhui1,2,
Ding Shoukang1,2,
Xie Tian1,
Chen Weiping1
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(52)
相关文章
施引文献
资源附件(0)
访问统计

摘要:镉(Cd)和铅(Pb)是生物体非必要元素,具有毒性大、迁移性强等特点,二者在场地土壤中通常存在复合污染的现象。土壤污染物预测无效应浓度(predicted no effect concentration,PNEC)是污染物自身毒性与不确定性系数共同决定的参数,其中土壤污染物的生物有效性是PNEC值不确定性的重要来源。本研究选择湖南常宁某铜矿冶炼厂和江苏靖江某电镀厂2个不同类型的污染场地及周边土壤,基于土壤理化性质及重金属的有效性浓度,采用经验模型估算出Cd和Pb单一污染对植物根系生长的半效应浓度(median effect concentration,EC50)及其土壤中的PNEC,通过浓度加和(concentration addition,CA)模型,结合外推因子法,估算获得场地土壤实际Cd和Pb复合污染的预测无效应浓度(PNECmix)。结果表明,2个场地土壤中Cd的平均含量分别为背景值的102倍和37.6倍,Pb平均含量分别为背景值的15.1倍和3.86倍,Cd和Pb复合污染现象明显。由于2个场地土壤性质差异较大,Cd和Pb的EC50存在较大差异,EC50(Cd)分别为19.1~36.2 mg·kg-1和20.1~35.4 mg·kg-1,而EC50(Pb)分别为366~1 891 mg·kg-1和682~1 575 mg·kg-1。同时由于场地实际污染土壤的理化性质及Pb/Cd含量比不同,所推导的PNECmix也存在明显差异,Cd含量及其在Cd和Pb总量中的占比较高的土壤样点的PNECmix较低,2个场地的PNECmix分别为0.933~37.9 mg·kg-1和32.9~744 mg·kg-1。2个场地调查样点中Cd和Pb含量的实测值均在一定程度上高于相应的PNECmix,对植物生长存在一定的生态风险。因此,进行复合污染生态风险基准值制定和生态风险评价时,需要考虑影响污染物的生物有效性和关键场地特异性(site-specific)因素,如土壤理化性质及不同污染物浓度比等。
关键词: 场地/
重金属/
预测无效应浓度/
浓度加和模型

Abstract:Both cadmium (Cd) and lead (Pb) are non-essential elements for organisms and they have the characteristics of high toxicity and strong migration. These two elements usually co-exist in soil of the sites. The predicted no effect concentration (PNEC) of soil pollutants is a parameter determined depending on both the toxic effect and the uncertainty coefficient. The bioavailability of pollutants in soil is a significant source of uncertainty in calculating PNECs. In this study, two contaminated sites were studied, one is a copper smelter in Changning, Hunan Province, and the other is an electroplating plant in Jingjiang, Jiangsu Province. Based on the physical-chemical properties and the bioavailable concentrations of heavy metals of the soil, the median effect concentrations (EC50) and PNECs of Cd and Pb in the studied soil were calculated using empirical models based on plant root growth. Through concentration addition (CA) model and extrapolation factor method, the predicted no effect concentration of mixture (PNECmix) of Cd and Pb in the studied soil were also calculated. The results showed the EC50 of Cd and Pb are quite different between the two studied sites due to the large difference in soil properties. The EC50(Cd) values are 19.1 ~ 36.2 mg·kg-1 and 20.1 ~ 35.4 mg·kg-1, while the EC50(Pb) values are 366 ~ 1 891 mg·kg-1and 682 ~ 1 575 mg·kg-1, respectively. Meanwhile, great difference in the estimated PNECmix between the two sites were also observed due to the different physical-chemical properties and Pb/Cd ratios. The soil with higher concentration or proportion of Cd had lower PNECmix. The PNECmix values of the two sites are 0.933 ~ 37.9 mg·kg-1 and 32.9 ~ 744 mg·kg-1, respectively. The measured concentrations of Cd and Pb in the survey points of the two sites were generally higher than the corresponding estimated PNECmix, which posed potential ecological risk. Therefore, for the establishment of ecological risk benchmark value and ecological risk assessment of compound pollution, it is necessary to consider key factors impacting the bioavailability of pollutants in soil and site specificity, e.g., the physical-chemical properties of the soil and the concentration ratio of different pollutants co-existing.
Key words:site/
heavy metal/
predicted no effect concentration/
concentration addition model.

加载中
骆永明. 中国污染场地修复的研究进展、问题与展望[J]. 环境监测管理与技术, 2011, 23(3):1-6Luo Y M. Contaminated site remediation in China:Progresses, problems and prospects[J]. The Administration and Technique of Environmental Monitoring, 2011, 23(3):1-6(in Chinese)
中华人民共和国环境保护部和国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014(5):10-11
Xing W Q, Zhang H Y, Scheckel K G, et al. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan Province, China[J]. Environmental Monitoring and Assessment, 2015, 188(1):1-10
王美娥, 丁寿康, 郭观林, 等. 污染场地土壤生态风险评估研究进展[J]. 应用生态学报, 2020, 31(11):3946-3958Wang M E,Ding S K, Guo G L, et al. Advances in ecological risk assessment of soil in contaminated sites[J]. Chinese Journal of Applied Ecology, 2020, 31(11):3946-3958(in Chinese)
沈城, 刘馥雯, 吴健, 等. 再开发利用工业场地土壤重金属含量分布及生态风险[J]. 环境科学, 2020, 41(11):5125-5132Shen C, Liu F W, Wu J, et al. Distribution and ecological risk of heavy metals in the soil of redevelopment industrial sites[J]. Environmental Science, 2020, 41(11):5125-5132(in Chinese)
Clemens S, Aarts M G M, Thomine S, et al. Plant science:The key to preventing slow cadmium poisoning[J]. Trends in Plant Science, 2013, 18(2):92-99
Chaney R L, Reeves P G, Ryan J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals, 2004, 17(5):549-553
Ashraf U, Kanu A S, Mo Z W, et al. Lead toxicity in rice:Effects, mechanisms, and mitigation strategies:A mini review[J]. Environmental Science and Pollution Research, 2015, 22(23):18318-18332
Rooney C P, Zhao F J, McGrath S P. Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3):726-732
Criel P, Lock K, Eeckhout H V, et al. Influence of soil properties on copper toxicity for two soil invertebrates[J]. Environmental Toxicology and Chemistry, 2008, 27(8):1748-1755
Zhang X Q, Li J M, Wei D P, et al. The solid-solution distribution of copper added to soils:Influencing factors and models[J]. Journal of Soils and Sediments, 2018, 18(9):2960-2969
王巍然, 林祥龙, 赵龙, 等. 我国20种典型土壤中锌对白符跳虫的毒性阈值及其预测模型[J]. 农业环境科学学报, 2021, 40(4):766-773Wang W R, Lin X L, Zhao L, et al. Toxicity threshold and prediction model for zinc in soil-dwelling springtails in Chinese soils[J]. Journal of Agro-Environment Science, 2021, 40(4):766-773(in Chinese)
章海波, 骆永明, 李志博, 等. 土壤环境质量指导值与标准研究Ⅲ.污染土壤的生态风险评估[J]. 土壤学报, 2007, 44(2):338-349Zhang H B, Luo Y M, Li Z B, et al. Study on soil environmental quality guidelines and standardsⅢ. Ecological risk assessment of polluted soils[J]. Acta Pedologica Sinica, 2007, 44(2):338-349(in Chinese)
张霖琳, 金小伟, 王业耀. 土壤污染物的生态毒理效应和风险评估研究进展[J]. 中国环境监测, 2020, 36(6):5-13Zhang L L, Jin X W, Wang Y Y. Research progress on ecotoxicological effects and risk assessment of soil pollutants[J]. Environmental Monitoring in China, 2020, 36(6):5-13(in Chinese)
徐小庆, 郭璞, 王晓静, 等. 浓度加和模型与独立作用模型在化学混合物联合毒性预测方面的研究进展[J]. 动物医学进展, 2020, 41(4):91-94Xu X Q, Guo P, Wang X J, et al. Progress on CA and IA models in combined toxicity prediction of chemical mixtures[J]. Progress in Veterinary Medicine, 2020, 41(4):91-94(in Chinese)
Puckowski A, Stolte S, Wagil M, et al. Mixture toxicity of flubendazole and fenbendazole to Daphnia magna[J]. International Journal of Hygiene and Environmental Health, 2017, 220(3):575-582
Nys C, van Regenmortel T, Janssen C R, et al. A framework for ecological risk assessment of metal mixtures in aquatic systems[J]. Environmental Toxicology and Chemistry, 2018, 37(3):623-642
中华人民共和国生态环境部. 建设用地土壤污染状况调查技术导则:HJ 25.1-2019[S]. 北京:中华人民共和国生态环境部, 2019 Ministry of Ecology and Environment of the People's Republic of China. Technical guidelines for investigation on soil contamination of land for construction:HJ 25.12019[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2019(in Chinese)
中华人民共和国生态环境部. 土壤pH值的测定电位法:HJ 962-2018[S]. 北京:中华人民共和国生态环境部, 2018 Ministry of Ecology and Environment of the People's Republic of China. Soil:Determination of pH:Potentiometry:HJ 962-2018[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2018(in Chinese)
International Organization for Standardization. Soil quality. Determination of organic and total carbon after dry combustion (elementary analysis):ISO 10694-1995[S]. Geneva:International Organization for Standardization, 1995
中华人民共和国环境保护部. 土壤阳离子交换量的测定三氯化六氨合钴浸提-分光光度法:HJ 889-2017[S]. 北京:中华人民共和国环境保护部, 2017 Ministry of Environmental Protection of the People's Republic of China. Soil quality:Determination of cation exchange capacity (CEC):Hexamminecobalt trichloride solution:Sepctrophotometric method:HJ 889-2017[S]. Beijing:Ministry of Environmental Protection of the People's Republic of China, 2017(in Chinese)
Houba V J G, Temminghoff E J M, Gaikhorst G A, et al. Soil analysis procedures using 0.01 M calcium chloride as extraction reagent[J]. Communications in Soil Science and Plant Analysis, 2000, 31(9-10):1299-1396
王美娥, 彭驰, 陈卫平. 宁夏干旱地区工业区对农田土壤重金属累积的影响[J]. 环境科学, 2016, 37(9):3532-3539Wang M E, Peng C, Chen W P. Impacts of industrial zone in arid area in Ningxia Province on the accumulation of heavy metals in agricultural soils[J]. Environmental Science, 2016, 37(9):3532-3539(in Chinese)
Pueyo M, López-Sánchez J F, Rauret G. Assessment of CaCl2, NaNO3 and NH4 NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils[J]. Analytica Chimica Acta, 2004, 504(2):217-226
European Chemicals Agency. Guidance oninformation requirements and chemical safety assessment. Chapter R. 8:Characterisation of dose[concentration]-response for human health[S]. Helsinki:European Chemicals Agency, 2008
宋文恩, 陈世宝. 基于水稻根伸长的不同土壤中镉(Cd)毒性阈值(ECx)及预测模型[J]. 中国农业科学, 2014, 47(17):3434-3443Song W E, Chen S B. The toxicity thresholds (ECx) of cadmium (Cd) to rice cultivars as determined by root-elongation tests in soils and its predicted models[J]. Scientia Agricultura Sinica, 2014, 47(17):3434-3443(in Chinese)
李宁. 基于不同终点测定土壤铅的生态风险阈值及其预测模型[D]. 北京:中国农业科学院, 2016:16-17 Li N. The toxicity thresholds (ECx) of Pb and its predicted models based on various endpoint determination[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016:16-17(in Chinese)
陈晨, 钱永忠. 农药残留混合污染联合效应风险评估研究进展[J]. 农产品质量与安全, 2015(5):49-53
中华人民共和国国家环境保护局, 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990:331-337, 366-369
中华人民共和国环境保护部. 土壤环境质量农用地土壤污染风险管控标准(试行):GB 15618-2018[S]. 北京:中华人民共和国环境保护部, 2018 Ministry of Environmental Protection of the People's Republic of China. Soil environmental quality risk control standard for soil contamination of farmland:GB 156182018[S]. Beijing:Ministry of Environmental Protection of the People's Republic of China, 2018(in Chinese)
中华人民共和国生态环境部. 土壤环境质量建设地土壤污染风险管控标准(试行):GB 36600-2018[S]. 北京:中华人民共和国生态环境部, 2018 Ministry of Ecology and Environment of the People's Republic of China. Soil environmental quality risk control standard for soil contamination of development land:GB 36600-2018[S]. Beijing:Ministry of Ecology and Environment of the People's Republic of China, 2018(in Chinese)
杨梦丽, 叶明亮, 马友华, 等. 基于重金属有效态的农田土壤重金属污染评价研究[J]. 环境监测管理与技术, 2019, 31(1):10-13, 38 Yang M L, Ye M L, Ma Y H, et al. Review on heavy metal pollution evaluation in farmland soil based on bioavailable form of heavy metal[J]. The Administration and Technique of Environmental Monitoring, 2019, 31(1):10-13, 38(in Chinese)
孙庆超, 王旭东, 乔建晨, 等. 不同质地土壤对镉的吸附特性及影响因子研究[J]. 土壤, 2020, 52(3):545-551Sun Q C, Wang X D, Qiao J C, et al. Study on Cd adsorption characteristics and influencing factors of soils with different textures[J]. Soils, 2020, 52(3):545-551(in Chinese)
Chen H M, Zheng C R, Tu C, et al. Chemical methods and phytoremediation of soil contaminated with heavy metals[J]. Chemosphere, 2000, 41(1-2):229-234
许莉莉. 土壤中有效态重金属的化学试剂提取法研究进展[J]. 冶金与材料, 2019, 39(3):32-33
陈飞霞, 魏世强. 土壤中有效态重金属的化学试剂提取法研究进展[J]. 干旱环境监测, 2006, 20(3):153-158Chen F X, Wei S Q. Study of chemical extraction of heavy metals in soil[J]. Arid Environmental Monitoring, 2006, 20(3):153-158(in Chinese)
杨梦丽, 马友华, 黄文星, 等. 土壤Cd和Pb有效态与全量和pH相关性研究[J]. 广东农业科学, 2019, 46(4):74-80Yang M L, Ma Y H, Huang W X, et al. Study on the correlation between available state, total amount and pH of soil Cd and Pb[J]. Guangdong Agricultural Sciences, 2019, 46(4):74-80(in Chinese)
Mann S S, Rate A W, Gilkes R J. Cadmium accumulation in agricultural soils in western Australia[J]. Water, Air, and Soil Pollution, 2002, 141(1-4):281-297
朱侠, 李连祯, 涂晨, 等. 不同性质农田土壤中铜的可提取性与生物有效性及毒性[J]. 土壤, 2020, 52(5):911-919Zhu X, Li L Z, Tu C, et al. Extractability, bioavailability and toxicity of Cu in farmland soils with different properties[J]. Soils, 2020, 52(5):911-919(in Chinese)
王子萱, 陈宏坪, 李明, 等. 不同土壤中镉对大麦和多年生黑麦草毒性阈值的研究[J]. 土壤, 2019, 51(6):1151-1159Wang Z X, Chen H P, Li M, et al. Toxicity thresholds of cadmium to barley and perennial ryegrass as determined by root-elongation and growth tests in soils[J]. Soils, 2019, 51(6):1151-1159(in Chinese)
李宁, 郭雪雁, 陈世宝, 等. 基于大麦根伸长测定土壤Pb毒性阈值、淋洗因子及其预测模型[J]. 应用生态学报, 2015, 26(7):2177-2182Li N, Guo X Y, Chen S B, et al. Toxicity thresholds and predicted model of Pb added to soils with various properties and its leaching factors as determined by barley rootelongation test[J]. Chinese Journal of Applied Ecology, 2015, 26(7):2177-2182(in Chinese)
郑倩倩, 王兴祥, 丁昌峰. 基于物种敏感性分布的江苏省典型水稻土Cd安全阈值研究[J]. 土壤, 2019, 51(3):557-565Zheng Q Q, Wang X X, Ding C F. Food safety thresholds of cadmium in two typical paddy soils of Jiangsu Province based on species sensitivity distribution[J]. Soils, 2019, 51(3):557-565(in Chinese)
王晓南, 陈丽红, 王婉华, 等. 保定潮土铅的生态毒性及其土壤环境质量基准推导[J]. 环境化学, 2016, 35(6):1219-1227Wang X N, Chen L H, Wang W H, et al. Ecotoxicological effect and soil environmental quality criteria of lead in the fluvo-aquic soil of Baoding[J]. Environmental Chemistry, 2016, 35(6):1219-1227(in Chinese)
刘智峰, 呼世斌, 宋凤敏, 等. 陕西某铅锌冶炼区土壤重金属污染特征与形态分析[J]. 农业环境科学学报, 2019, 38(4):818-826Liu Z F, Hu S B, Song F M, et al. Pollution characteristics and speciation analysis of heavy metals in soils around a lead-zinc smelter area in Shaanxi Province, China[J]. Journal of Agro-Environment Science, 2019, 38(4):818-826(in Chinese)
窦韦强, 安毅, 秦莉, 等. 农用地土壤重金属生态安全阈值确定方法的研究进展[J]. 生态毒理学报, 2019, 14(4):54-64Dou W Q, An Y, Qin L, et al. Research progress in determination methods of ecological safety thresholds for heavy metals in agricultural land[J]. Asian Journal of Ecotoxicology, 2019, 14(4):54-64(in Chinese)
禹明慧, 孟祥怀, 段昌群, 等. 蚯蚓介导下镉胁迫对土壤理化性质和玉米生长的影响[J]. 环境化学, 2020, 39(10):2654-2665Yu M H, Meng X H, Duan C Q, et al. Effects of cadmium stress on soil physical and chemical properties and maize growth mediated by earthworms[J]. Environmental Chemistry, 2020, 39(10):2654-2665(in Chinese)
杨清伟, 束文圣, 林周, 等. 铅锌矿废水重金属对土壤水稻的复合污染及生态影响评价[J]. 农业环境科学学报, 2003, 22(4):385-390Yang Q W, Shu W S, Lin Z, et al. Compound pollution and ecological evaluation of heavy metals from mining waste water to soil rice plant system[J]. Journal of AgroEnvironmental Science, 2003, 22(4):385-390(in Chinese)
李勇, 黄占斌, 王文萍, 等. 重金属铅镉对玉米生长及土壤微生物的影响[J]. 农业环境科学学报, 2009, 28(11):2241-2245Li Y, Huang Z B, Wang W P, et al. Effects of heavy metals lead and cadmium on Zea mays L. growth and the soil microorganism[J]. Journal of Agro-Environment Science, 2009, 28(11):2241-2245(in Chinese)
郭军康, 赵瑾, 魏婷, 等. 西安市郊不同年限设施菜地土壤Cd和Pb形态分析与污染评价[J]. 农业环境科学学报, 2018, 37(11):2570-2577Guo J K, Zhao J, Wei T, et al. Speciation and pollution assessment of cadmium and lead in vegetable greenhouse soil from a Xi'an Suburb with different cultivating years[J]. Journal of Agro-Environment Science, 2018, 37(11):2570-2577(in Chinese)
Salazar M J, Pignata M L. Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation[J]. Journal of Geochemical Exploration, 2014, 137:29-36
Zulqurnain Haider M, Hussain S, Muhammad Adnan Ramzani P, et al. Bentonite and biochar mitigate Pb toxicity in Pisum sativum by reducing plant oxidative stress and Pb translocation[J]. Plants, 2019, 8(12):571
Suter Ⅱ G W. Ecological Risk Assessment[M]. Los Angeles:CRC Press, 201

相关话题/土壤 生态 污染 北京 环境科学