删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

水蚤分子生态毒理学研究进展

本站小编 Free考研考试/2021-12-30

巩宁1,
孟紫强2,
邵魁双3,
孙野青1
1. 大连海事大学环境科学与工程学院, 环境系统生物学研究所, 大连 116024;
2. 山西大学环境科学研究所, 山西大学环境医学与毒理学研究所, 太原 030006;
3. 国家海洋环境监测中心, 大连 116023
作者简介: 巩宁(1975-),女,博士,副教授,硕士生导师,研究方向为海洋生物学、水生毒理学,E-mail:cospar06@dlmu.edu.cn.
基金项目: 国家自然科学基金资助项目(41301560);国家重点研发计划资助项目“浒苔着生机理与防控技术(2016YFC1402104)”


中图分类号: X171.5


Advances in Ecotoxicogenomics with Water Fleas

Gong Ning1,
Meng Ziqiang2,
Shao Kuishuang3,
Sun Yeqing1
1. College of Environmental Science and Engineering, Institute of Environmental Systems Biology, Dalian Maritime University, Dalian 116024, China;
2. Institute of Environmental Science, Institute of Environmental Medicine and Toxicology, Shanxi University, Taiyuan 030006, China;
3. National Marine Environmental Monitoring Center, Dalian 116023, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(44)
相关文章
施引文献
资源附件(0)
访问统计

摘要:水蚤是广泛分布于各类淡水水体中的浮游动物,在水生生态系统中具有重要地位,也是水生毒理学研究中常用的模式生物。近年来,分子毒理学的发展为水蚤生态毒理学研究提供了新的工具和研究思路。本文分别从基因组学、转录组学、蛋白质组学、代谢组学和表观遗传组学方面,综述了不同环境污染物(重金属、农药和杀菌剂等有机污染物、环境激素类化合物、纳米材料和藻毒素等)对水蚤的生态毒理学效应及分子机制,为通过水蚤生态毒理学研究进行环境污染生物标志物筛选及生态风险评估提供参考。
关键词: 水蚤/
分子生态毒理学/
生态毒理基因组学/
生物标志物

Abstract:Water fleas are the keystone aquatic organisms in most fresh water habitats, which have been often adopted as the model testing organisms in ecotoxicological experiments due to the advantages of high sensitivity to toxic substances, easy cultivation and high growth rate, etc. In recent years, the development of molecular toxicology has provided new tools and concept for the study of aquatic ecotoxicology. The omics-based technologies can facilitate molecular ecotoxicology studies in water fleas, better understanding and improving the knowledge on how environmental stressors, such as heavy metals, organic compounds and nanoparticles, cause toxicity in ecologically relevant organisms. In this review, the commonly used omic technologies, including genomic (or transcriptomic), protomic, metabolomic analyses as well as epigenetic technology have been discussed in order to provide references for the application of water fleas in ecotoxicology for screening of biomarkers and ecological risk assessment.
Key words:water flea/
molecular ecotoxicology/
ecotoxigenomics/
biomarker.

加载中
Kim H J, Koedrith P, Seo Y R. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, Daphnia model organism[J]. International Journal of Molecular Sciences, 2015, 16(6):12261-12287
Organization for Economic Cooperation and Development (OECD). Guideline for Testing of Chemicals. Daphnia sp., Acute Immobilisation Test. OECD 202[R]. Paris:OECD, 2004
Organization for Economic Cooperation and Development (OECD). Guidelines for Testing of Chemicals. Daphnia magna Reproduction Test. OECD 211[R]. Paris:OECD, 2012
Croce R, Cina F, Lombardo A, et al. Aquatic toxicity of several textile dye formulations:Acute and chronic assays with Daphnia magna and Raphidocelis subcapitata[J]. Ecotoxicology and Environmental Safety, 2017, 144:79-87
Vukov O, Smith D S, McGeer J C. Acute dysprosium toxicity to Daphnia pulex and Hyalella azteca and development of the biotic ligand approach[J]. Aquatic Toxicology, 2016, 170:142-151
Martins C, Jesus F T, Nogueira A J A. The effects of copper and zinc on survival, growth and reproduction of the cladoceran Daphnia longispina:Introducing new data in an "old" issue[J]. Ecotoxicology, 2017, 26:1157-1169
Garcia-Reyero N, Poynton H C, Kennedy A J, et al. Biomarker discovery and transcriptomic responses in Daphnia magna exposed to munitions constituents[J]. Environmental Science & Technology, 2009, 43:4188-4193
Taylor N S, Weber R J M, Southam A D, et al. A new approach to toxicity testing in Daphnia magna:Application of high throughput FT-ICR mass spectrometry metabolomics[J]. Metabolomics, 2009, 5:44-58
Watanabe H, Kobayashi K, Kato Y, et al. Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics[J]. Cell Biology and Toxicology, 2008, 24:641-647
胡利腾,夏立萍,武敏敏,等.太平洋真宽水蚤(Eurytemora pacifica) Cu/ZnSOD基因克隆及在重金属胁迫下的表达分析[J].海洋与湖沼, 2018, 49(2):384-394Hu L T, Xia L P, Wu M M, et al. Cloning and expression analysis of Cu/Zn SOD gene of Eurytemora pacifica under metal stress[J]. Oceanologia Et Limnologia Sinica, 2018, 49(2):384-394(in Chinese)
Roncalli V, Cieslak M C, Lenz P H. Transcriptomic responses of the calanoid copepod Calanus finmarchicus to the saxitoxin producing dinoflagellate Alexandrium fundyense[J]. Scientific Report, 2016, 6:25708-25720
韦晓慧.海洋酸化条件下铜、镉对日本虎斑猛水蚤(Tigriopus japonicus)发育、繁殖和超氧化物歧化酶活性的影响[D].青岛:中国海洋大学, 2013:1-3 Wei X H. Effect of simulated ocean acidification condition and heavy metals of Cu and Cd on the development, reproduction and SOD activity of Tigriopus japonicus[D]. Qingdao:Ocean University of China, 2013:1-3(in Chinese)
Santos E M, Paull G C, van Look K J, et al. Gonadal transcriptome responses and physiological consequences of exposure to estrogen in breeding zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2007, 83:134-142
Ju Z L, Wells M C, Walter R B. DNA microarray technology in toxicogenomics of aquatic models:Methods and applications[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2007, 145:5-14
Costigan S L, Werner J, Ouellet J D, et al. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents[J]. Aquatic Toxicology, 2012, 122-123:44-55
Poynton H C, Varshavsky J R, Chang B, et al. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity[J]. Environmental Science & Technology, 2007, 41:1044-1050
Poynton H C, Zuzow R, Loguinov A V, et al. Gene expression profiling in Daphnia magna, part Ⅱ:Validation of a copper specific gene expression signature with effluent from two copper mines in California[J]. Environmental Science & Technology, 2008, 42:6257-6263
Poynton H C, Lazorchak J M, Impellitteri C A, et al. Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles[J]. Environmental Science & Technology, 2012, 46:6288-6296
Soetaert A, Moens L N, van der Ven K, et al. Molecular impact of propiconazole on Daphnia magna using a reproduction-related cDNA array[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2006, 142:66-76
Watanabe H, Tatarazako N, Oda S, et al. Analysis of expressed sequence tags of the water flea Daphnia magna[J]. Genome, 2005, 48:606-609
Heckmann L H, Connon R, Hutchinson T H, et al. Expression of target and reference genes in Daphnia magna exposed to ibuprofen[J]. BMC Genomics, 2006, 7:175
Olmstead A W, LeBlanc G A. Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna[J]. The Journal of Experimental Zoology, 2002, 293:736-739
Eads B D, Andrews J, Colbourne J K. Ecological genomics in Daphnia:Stress responses and environmental sex determination[J]. Heredity, 2008, 100(2):184-190
Jeong S W, Lee S M, Yum S S, et al. Genomic expression responses toward bisphenol-A toxicity in Daphnia magna in terms of reproductive activity[J]. Molecular & Cellular Toxicology, 2013, 9:149-158
Ansorge W J. Next-generation DNA sequencing techniques[J]. New Biotechnology, 2009, 25(4):195-203
Li Z, Li W, Zha J, et al. Transcriptome analysis reveals benzotriazole ultraviolet stabilizers regulate networks related to inflammation in juvenile zebrafish (Danio rerio) brain[J]. Environmental Toxicology, 2019, 34(2):112-122
Jackman K W, Veldhoen N, Miliano R C, et al. Transcriptomics investigation of thyroid hormone disruption in the olfactory system of the Rana[Lithobates] catesbeiana tadpole[J]. Aquatic Toxicology, 2018, 202:46-56
Yadetie F, Zhang X, Hanna E M, et al. RNA-Seq analysis of transcriptome responses in Atlantic cod (Gadus morhua) precision-cut liver slices exposed to benzo[a]pyrene and 17α-ethynylestradiol[J]. Aquatic Toxicology, 2018, 201:174-186
Colli-Dula R C, Fang X, Moraga-Amador D, et al. Transcriptome analysis reveals novel insights into the response of low-dose benzo (a) pyrene exposure in male tilapia[J]. Aquatic Toxicology, 2018, 201:162-173
Beauvais-Flück R, Slaveykova V I, Cosio C. Effects of two-hour exposure to environmental and high concentrations of methylmercury on the transcriptome of the macrophyte Elodea nuttallii[J]. Aquatic Toxicology, 2018, 194:103-111
Orsini L, Gilbert D, Podicheti R, et al. Daphnia magna transcriptome by RNA-Seq across 12 environmental stressors[J]. Scientific Data, 2017, 31(4):170006
Russo C, Isidori M, Deaver J A, et al. Toxicogenomic responses of low level anticancer drug exposures in Daphnia magna[J]. Aquatic Toxicology, 2018, 203:45-50
Schwarzenberger A, Sadler T, Motameny S, et al. Deciphering the genetic basis of microcystin tolerance[J]. BMC Genomics, 2014, 15:776-784
Le T H, Lim E S, Hong N H, et al. Proteomic analysis in Daphnia magna exposed to As (Ⅲ), As (Ⅴ) and Cd heavy metals and their binary mixtures for screening potential biomarkers[J]. Chemosphere, 2013, 93:2341-2348
Rainville L C, Carolan D, Varela A C, et al. Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna[J]. Analyst, 2014, 7:1678-1686
Schwarzenberger A, Zitt A, Kroth P, et al. Gene expression and activity of digestive proteases in Daphnia:Effects of cyanobacterial protease inhibitors[J]. BMC Physiology, 2010, 10:6
Taylor N S, Weber R J M, Southam A D, et al. A new approach to toxicity testing in Daphnia magna:Application of high throughput FT-ICR mass spectrometry metabolomics[J]. Metabolomics, 2009, 5:44-58
Taylor N S, Weber R J, White T A, et al. Discriminating between different acute chemical toxicities via changes in the Daphnid metabolome[J]. Toxicology Sciences, 2010, 118:307-317
Poynton H C, Taylor N S, Hicks J, et al. Metabolomics of microliter hemolymph samples enables an improved understanding of the combined metabolic and transcriptional responses of Daphnia magna to cadmium[J]. Environmental Science & Technology, 2011, 45:3710-3717
Nagato E G, D'eon J C, Lankadurai B P, et al. H-1 NMR-based metabolomics investigation of Daphnia magna responses to sub-lethal exposure to arsenic, copper and lithium[J]. Chemosphere, 2013, 93:331-337
Taylor N S, Gavin A, Viant M R. Metabolomics discovers early-response metabolic biomarkers that can predict chronic reproductive fitness in individual Daphnia magna[J]. Metabolites, 2018, 8(3):42
Vandegehuchte M B, Lemière F, Vanhaecke L, et al. Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation[J]. Comparative Biochemistry Physiology Part C:Toxicology & Pharmacology, 2010, 151:278-285
Vandegehuchte M B, De Coninck D, Vandenbrouck T, et al. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna[J]. Environmental Pollution, 2010, 158(10):3323-3329
Vandegehuchte M B, Lemière F, Janssen C R. Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure[J]. Comparative Biochemistry and Physiology. Part C:Toxicology & Pharmacology, 2009, 150(3):343-348

相关话题/生态 生物 海洋 研究所 环境