删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

环境剂量磷酸三(1,3-二氯异丙基)酯多代暴露对斑马鱼子代仔鱼的神经发育毒性

本站小编 Free考研考试/2021-12-30

丁希胜1,
马徐发1,2,
余丽琴1,2
1. 华中农业大学水产学院, 武汉 430070;
2. 湖北省池塘养殖工程实验室, 武汉 430070
作者简介: 丁希胜(1992-),男,硕士研究生,研究方向为水生态毒理学与环境健康,E-mail:18202713770@163.com.
基金项目: 国家自然科学基金面上项目(21677057);国家自然科学基金青年项目(21307162)


中图分类号: X171.5


Neurodevelopmental Toxicity of Zebrafish Offspring after Multigenerational Exposure to Tris (1,3-dichloro-2-propyl) phosphate at Environmental Concentrations

Ding Xisheng1,
Ma Xufa1,2,
Yu Liqin1,2
1. College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
2. Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(44)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为探究环境剂量磷酸三(1,3-二氯异丙基)酯(TDCIPP)多代暴露对生物体的影响,选取斑马鱼为模型,研究了斑马鱼暴露于0、3、30和300 ng L?1 TDCIPP至3代后,对每一代子代5 dpf仔鱼神经发育的毒性效应。研究结果表明,F0代暴露于300 ng L?1 TDCIPP 120 d后所产F1代仔鱼的孵化率显著性下降,存活率显著性降低;但对F2代和F3代仔鱼的这些终点指标均无显著性影响。运动行为结果表明,F0代暴露于3和300 ng L?1 TDCIPP 120 d会导致F1代仔鱼在光暗周期刺激下的游泳速度受到抑制,并伴随着神经元发育基因(ngn1)以及轴突生长标志基因(α1-tubulinnetrin1bzn5)的显著性上调,相关性分析表明,游泳速度的抑制与ngn1α1-tubulinzn5这3个基因的表达显著相关。但对F2代仔鱼,仅300 ng L?1 TDCIPP导致其游泳速度在黑暗刺激下显著性下降,且导致神经发育和再生相关基因(elavl3gap43gfapshha)表达量显著性下降,但游泳速度的下降与基因表达无显著相关性。继续暴露至F3代仔鱼时,TDCIPP暴露对运动行为不再有显著影响。研究表明,环境剂量TDCIPP多代暴露对子代仔鱼具有神经发育毒性,表现为运动行为受损和神经发育相关基因表达量的改变,但毒性效应随着暴露代数的增加而减弱。
关键词: 磷酸三(1,3-二氯异丙基)酯/
斑马鱼/
神经发育毒性/
多代暴露/
环境剂量

Abstract:In order to investigate the multigenerational exposure effects of TDCIPP at environmental concentrations, we selected zebrafish (Danio rerio) as a model and studied the developmental neurotoxicity on 5 dpf zebrafish larvae of each generation after exposure to 0, 3, 30 and 300 ng L?1 TDCIPP for three consecutive generations. Our results showed that hatching rates and survival rates were significantly affected in the 5 dpf larvae of F1 generation, but were unaffected in 5 dpf larvae of neither F2 nor F3 generation. Behavioral measurements showed that exposure to 3 or 300 ng L?1 TDCIPP significantly decreased the swimming behavior response of the 5 dpf larvae of F1 generation to both light and dark stimulation. TDCIPP exposure significantly increased expression of the neural marker gene ngn1 and axon-related genes (α1-tubulin, netrin1b and zn5) in F1 larvae. In addition, correlation analysis showed that the inhibition of swimming speed was significantly correlated with the expression of genes, i.e., ngn1, α1-tubulin and zn5, which suggested that the disturbance on nerve development might lead to the abnormal behaviors in F1 larvae. For F2 larvae, only 300 ng L?1 TDCIPP caused a significant decrease in swimming speed under dark stimulation, and resulted in a significant decrease in the expression of genes related to nerve development and regeneration (elavl3, gap43, gfap, and shha). However, there was no significant correlation between the inhibition of behaviors and the altered expressions of genes in F2 larvae. For F3 larvae, TDCIPP exposure no longer had a significant effect on motor behavior. Taken together, our results showed that the multigenerational exposure to TDCIPP at environmental concentrations had neurodevelopmental toxicity to the offspring larvae, which exhibited changes in motor behavior and/or expressions of neurodevelopment-related genes, but the toxic effects decreased with the increase of number of generations being exposed.
Key words:TDCIPP/
zebrafish/
developmental neurotoxicity/
multigenerational exposure/
environmental concentration.

加载中
Reemtsm T, Quintana J B, Rodil R, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate[J]. TrAC Trends in Analytical Chemistry, 2008, 27(9):727-737
蔡哲,张宏,贺红武.有机磷阻燃剂研究新进展[J].精细化工中间体, 2010, 40(4):6-13Cai Z, Zhang H, He H W. Recent achievements of organophosphorus flame retardants[J]. Fine Chemical Intermediates, 2010, 40(4):6-13(in Chinese)
Dishaw L V, Powers C M, Ryde I T, et al. Is the pentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant?Studies in PC12 cells[J]. Toxicology & Applied Pharmacology, 2011, 256(3):281-289
Veen I V D, Boer J D. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153
Sundkvist A M, Olofsson U, Haglund P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk[J]. Journal of Environmental Monitoring, 2010, 12(4):943-951
Cao S, Zeng X, Song H, et al. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China[J]. Environmental Toxicology & Chemistry, 2012, 31(7):1478-1484
Wang X W, Liu J F, Yin Y G. Development of an ultrahigh-performance liquid chromatography-tandem mass spectrometry method for high throughput determination of organophosphorus flame retardants in environmental water[J]. Journal of Chromatography A, 2011, 1218(38):6705-6711
Hu M, Li J, Zhang B, et al. Regional distribution of halogenated organophosphate flame retardants in seawater samples from three coastal cities in China[J]. Marine Pollution Bulletin, 2014, 86(1-2):569-574
Liu X, Xiong L, Li D, et al. Monitoring and exposure assessment of organophosphorus flame retardants in source and drinking water, Nanjing, China[J]. Environmental Monitoring and Assessment, 2019, 191(2):119-
Ma Y, Cui K, Zeng F, et al. Microwave-assisted extraction combined with gel permeation chromatography and silica gel cleanup followed by gas chromatography-mass spectrometry for the determination of organophosphorus flame retardants and plasticizers in biological samples[J]. Analytica Chimica Acta, 2013, 786(5):47-53
Li R W, Zhou P J, Guo Y Y, et al. Tris (1,3-dichloro-2-propyl) phosphate-induced apoptotic signaling pathways in SH-SY5Y neuroblastoma cells[J]. NeuroToxicology, 2017, 58:1-10
Li R W, Zhou P J, Guo Y Y, et al. Tris (1,3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells:Involvement of ROS-mediated AMPK/mTOR/ULK1 pathways[J].Food and Chemical Toxicology, 2017, 100:183-196
Ta N, Li C N, Fang Y J, et al. Toxicity of TDCPP and TCEP on PC12 cell:Changes in CAMKII, GAP43, tubulin and NF-H gene and protein levels[J]. Toxicology Letters, 2014, 227(3):164-171
Yuan L, Li J, Zha J, et al.Targeting neurotrophic factors and their receptors, but not cholinesterase or neurotransmitter, in the neurotoxicity of TDCPP in Chinese rare minnow adults (Gobiocypris rarus)[J]. Environmental Pollution, 2015, 208(Pt B):670-677
Wang Q, Lam C W, Man Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1,3-dichloro-2-propyl phosphate (TDCPP) to zebrafish[J]. Aquatic Toxicology, 2015, 158:108-115
Wang Q, Lai L S, Wang X, et al. Bioconcentration and transfer of the organophorous flame retardant 1,3-dichloro-2-propyl phosphate causes thyroid endocrine disruption and developmental neurotoxicity in zebrafish larvae[J]. Environmental Science & Technology, 2015, 49(8):5123-5132
Dishaw L V, Hunter D L, Padnos B, et al. Developmental exposure to organophosphate flame retardants elicits overt toxicity and alters behavior in early life stage zebrafish (Danio rerio)[J]. Toxicological Sciences, 2014, 142(2):445-454
Jarema K A, Hunter D L, Shaffer R M, et al. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish[J]. Neurotoxicology and Teratology, 2015, 52(Pt B):194-209
Noyes P D, Haggard D E, Gonnerman G D, et al. Advanced morphological-behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants[J]. Toxicological Sciences, 2015, 145(1):177-195
Cheng R, Jia Y, Dai L, et al. Tris (1,3-dichloro-2-propyl) phosphate disrupts axonal growth, cholinergic system and motor behavior in early life zebrafish[J]. Aquatic Toxicology, 2017, 192:7-15
Oliveri A N, Ortiz E, Levin E D. Developmental exposure to an organophosphate flame retardant alters later behavioral responses to dopamine antagonism in zebrafish larvae[J]. Neurotoxicology and Teratology, 2018, 67:25-30
Fan C Y, Cowden J, Simmons S O, et al. Gene expression changes in developing zebrafish as potential markers for rapid developmental neurotoxicity screening[J]. Neurotoxicology and Teratology, 2010, 32(1):91-98
Kim C H, Ueshima E, Muraoka O, et al. Zebrafish elav/HuC homologue as a very early neuronal marker[J].Neuroscience Letters, 1996, 216(2):109-112
Ma Q, Kintner C, Anderson D J. Identification of neurogenin, a vertebrate neuronal determination gene[J]. Cell, 1996, 87(1):43-52
Baas P W. Microtubules and axonal growth[J]. Current Opinion in Cell Biology, 1997, 9(1):29-36
Udvadia A J, Köster R W, Skene J H. GAP-43 promoter elements in transgenic zebrafish reveal a difference in signals for axon growth during CNS development and regeneration[J]. Development, 2001, 128(7):1175-1182
Lauderdale J D, Davis N M, Kuwada J Y. Axon tracts correlate with netrin-1a expression in the zebrafish embryo[J]. Molecular and Cellular Neuroscience, 1997, 9(4):293-313
Beattie C E, Hatta K, Halpern M E, et al. Temporal separation in the specification of primary and secondary motoneurons in zebrafish[J]. Developmental Biology, 1997, 187(2):180-182
Fashena D, Westerfield M. Secondary motoneuron axons localize DM-GRASP on their fasciculated segments[J]. The Journal of Comparative Neurology, 1999, 406(3):415-424
Charron F, Stein E, Jeong J, et al. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance[J]. Cell, 2003, 113(1):20-23
Kolpak A. Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration[J]. Journal of Neuroscience, 2005, 25(13):3432-3441
Nielsen A L, Jørgensen A L. Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP[J]. Gene, 2003, 310(1):123-132
Brösamle C, Halpern M E. Characterization of myelination in the developing zebrafish[J]. Glia, 2002, 39(1):47-57
Yu L, Lam J C, Guo Y, et al. Parental transfer of polybrominated diphenyl ethers (PBDEs) and thyroid endocrine disruption in zebrafish[J]. Environmental Science & Technology, 2011, 45(24):10652-10659
Yu L, Deng J, Shi X, et al. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae[J]. Aquatic Toxicology, 2010, 97(3):230-233
Yu L, Jia Y, Su G, et al. Parental transfer of tris (1,3-dichloro-2-propyl) phosphate and transgenerational inhibition of growth of zebrafish exposed to environmentally relevant concentrations[J]. Environmental Pollution, 2017, 220(Pt A):196-203
Zhu Y, Ma X, Su G, et al. Environmentally relevant concentrations of the flame retardant tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) inhibits growth of female zebrafish and decreases fecundity[J]. Environmental Science & Technology, 2015, 49(24):14579-14587
Zhang Y, Li M, Li S, et al. Exposure to tris (1,3-dichloro-2-propyl) phosphate for two generations decreases fecundity of zebrafish at environmentally relevant concentrations[J]. Aquatic Toxicology, 2018, 200:178-187
Rice D, Barone S. Critical periods of vulnerability for the developing nervous system:Evidence from humans and animal models[J]. Environmental Health Perspectives, 2000, 108(suppl 3):511-533
Drapeau P, Saint-Amant L, Buss R R, et al. Development of the locomotor network in zebrafish[J]. Progress inNeurobiology, 2002, 68(2):85-111
Rao J V, Begum G, Pallela R, et al. Changes in behavior and brain acetylcholinesterase activity in mosquito fish, Gambusia affinis in response to the sub-lethal exposure to chlorpyrifos[J]. International Journal of Environmental Research and Public Health, 2005, 2(3):478-483
Oliveri A N, Bailey J M, Levin E D. Developmental exposure to organophosphate flame retardants causes behavioral effects in larval and adult zebrafish[J]. Neurotoxicology and Teratology, 2015, 52(Pt B):220-227
Chen X, Huang C, Wang X, et al. BDE-47 disrupts axonal growth and motor behavior in developing zebrafish[J]. Aquatic Toxicology, 2012, 120-121:35-44
Chen X, Dong Q, Chen Y, et al. Effects of dechlorane plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish[J]. Environmental Pollution, 2017, 224:7-15

相关话题/基因 神经 环境 运动 华中农业大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 浮游动物DNA宏条形码标志基因比较研究
    高旭1,杨江华1,张效伟1,21.污染控制与资源化研究国家重点实验室,南京大学环境学院,南京210023;2.江苏省环境保护化学品安全与健康风险研究重点实验室,南京210023作者简介:高旭(1995-),男,硕士研究生,研究方向为环境宏条形码物种多样性,E-mail:gaoxunju@163.co ...
    本站小编 Free考研考试 2021-12-30
  • 苯并[a]芘和1-羟基芘诱导人胚胎干细胞分化心肌细胞ROS、CYP基因表达和DNA损伤
    吴彬彬1,2,晏斌3,胡梅4,陈曦1,2,5,梁岩51.中国科学院深圳先进技术研究院,深圳518055;2.中国科学院大学,北京100049;3.香港大学李嘉诚医学院,香港;4.山东省食品药品检验研究院,济南250101;5.电子科技大学资源与环境学院,成都611731作者简介:吴彬彬(1988-) ...
    本站小编 Free考研考试 2021-12-30
  • 环境中可致肝脏损伤化学成分体外筛选模型的建立
    高美琪1,2,林鹤1,于娜1,刘兆泉1,任利翔11.沈阳化工研究院有限公司安全评价中心,沈阳110021;2.沈阳药科大学生命科学与生物制药学院,沈阳110016作者简介:高美琪(1994-),女,硕士,研究方向为肿瘤药理学、替代毒理学,E-mail:1014773401@qq.com.中图分类号: ...
    本站小编 Free考研考试 2021-12-30
  • 人多能干细胞在环境污染物风险评估中的应用与展望
    杨仁君1,2,任悦3,沈素3,殷诺雅1,2,FrancescoFaiola1,2,张杨31.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京100085;2.中国科学院大学资源与环境学院,北京100049;3.首都医科大学附属北京友谊医院药学部,北京100050作者简介:杨仁君( ...
    本站小编 Free考研考试 2021-12-30
  • 重庆长江流域水体中8种典型环境雌激素污染特征
    卓丽1,许榕发2,石运刚1,严骁2,庄僖2,胡凤琦1,刘强1,黄道建21.重庆市固体废物管理中心,重庆400020;2.生态环境部华南环境科学研究所,国家环境保护环境污染健康风险评价重点实验室,广州510655作者简介:卓丽(1984-),女,硕士,研究方向为化学品管理与风险防控,E-mail:zh ...
    本站小编 Free考研考试 2021-12-30
  • 我国苯的环境暴露、风险评估与管控
    张晓惠1,3,王冬梅2,焦永杰1,袁雪竹1,3,陈红1,王越1,31.天津市生态环境科学研究院,天津300191;2.天津市生态环境综合保障中心,天津300191;3.天津环科环安科技有限公司,天津300191作者简介:张晓惠(1986-),女,硕士,高级工程师,研究方向为环境有毒有害化学品风险评估 ...
    本站小编 Free考研考试 2021-12-30
  • 人体肠道耐药基因组的研究进展
    段宇婧1,吴新颜1,陈则友1,陈颖1,4,李林云1,祝思源1,毛大庆3,罗义1,2,,1.南开大学环境科学与工程学院,环境污染过程与基准教育部重点实验室,天津300350;2.南京大学环境学院,污染控制与资源化国家重点实验室,南京210093;3.南开大学医学院,天津300071;4.辽宁大学环境学 ...
    本站小编 Free考研考试 2021-12-30
  • 农用塑料薄膜使用现状与环境污染分析
    马兆嵘1,2,刘有胜1,2,,,张芊芊1,2,应光国1,21.华南师范大学环境学院,广州510006;2.广东省化学品污染与环境安全重点实验室&环境理论化学教育部重点实验室,华南师范大学,广州510006作者简介:马兆嵘(1994-),男,硕士研究生,研究方向为农用塑料薄膜污染,E-mail:zha ...
    本站小编 Free考研考试 2021-12-30
  • 蛋白质组学在环境毒理学中的研究进展
    耿柠波1,任晓倩1,2,张海军1,,,曹蓉1,宋肖垚1,罗云1,2,张保琴1,陈吉平1,,1.中国科学院大连化学物理研究所,中国科学院分离分析化学重点实验室,大连116023;2.中国科学院大学,北京100049作者简介:耿柠波(1985-),女,博士,副研究员,研究方向为环境毒理学,E-mail: ...
    本站小编 Free考研考试 2021-12-30
  • 环境污染物与肠道菌群互作关系的研究进展
    冯宇希,冯乃宪,陈昕,王一泽,郭静婕,莫测辉,暨南大学生命科学与技术学院,广州510632作者简介:冯宇希(1990-),男,博士,研究方向为环境毒理学,E-mail:yu-xifeng@foxmail.com.通讯作者:莫测辉,tchmo@jnu.edu.cn基金项目:广东省应用型科技研发专项资金 ...
    本站小编 Free考研考试 2021-12-30