删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

苯并[a]芘和1-羟基芘诱导人胚胎干细胞分化心肌细胞ROS、CYP基因表达和DNA损伤

本站小编 Free考研考试/2021-12-30

吴彬彬1,2,
晏斌3,
胡梅4,
陈曦1,2,5,
梁岩5
1. 中国科学院深圳先进技术研究院, 深圳 518055;
2. 中国科学院大学, 北京 100049;
3. 香港大学李嘉诚医学院, 香港;
4. 山东省食品药品检验研究院, 济南 250101;
5. 电子科技大学资源与环境学院, 成都 611731
作者简介: 吴彬彬(1988-),男,博士研究生,研究方向为环境毒理学,E-mail:bb.wu@siat.ac.cn.
基金项目: 广东省科技计划项目(2016A020214015);电子科技大学科研启动基金资助项目(Y03019023601008022);中国科学院战略性先导科技专项(XDA20060303)


中图分类号: X171.5


Benzo[a]pyrene and 1-Hydroxypyrene Induce ROS, CYP Gene Expression and DNA Damage in Human Embryonic Stem Cell Derived Cardiomyocytes

Wu Binbin1,2,
Yan Bin3,
Hu Mei4,
Chen Xi1,2,5,
Liang Yan5
1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
4. Shandong Institute for Food and Drug Control, Ji'nan 250101, China;
5. School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(33)
相关文章
施引文献
资源附件(0)
访问统计

摘要:多环芳烃(PAHs)化合物中的苯并[a]芘和PAHs暴露检测标志物1-羟基芘与心脏功能障碍有关,但其生物学机制尚不清楚。为研究苯并[a]芘和1-羟基芘对心脏的毒性作用,基于人胚胎干细胞分化心肌细胞(hESC-CM)研究了苯并[a]芘和1-羟基芘对心肌细胞活性氧(ROS)生成、CYP基因表达和DNA损伤等的影响。结果表明,苯并[a]芘和1-羟基芘对hESC-CM活性无影响,但能显著增强细胞ROS水平,诱导DNA损伤。此外,苯并[a]芘还能诱导细胞线粒体促凋亡基因的表达。研究表明,苯并[a]芘和1-羟基芘能通过诱导氧化应激和DNA损伤事件导致hESC-CM损伤,在一定程度上解释了多环芳烃暴露导致心脏疾病的分子机制。
关键词: 多环芳烃/
胚胎干细胞分化心肌细胞/
DNA损伤

Abstract:Benzo[a]pyrene, as a carcinogenic polycyclic aromatic hydrocarbon (PAH) compound, has received great concern due to its high health risk. 1-hydroxypyrene, a metabolite of pyrene, is widely used as one biomarker for PAHs. Previous studies demonstrated that both benzo[a]pyrene and 1-hydroxypyrene related with cardiac dysfunction, but the biological mechanisms have remained unclear. In the present study, toxic mechanisms of these two PAHs were evaluated using human embryonic stem cell derived cardiomyocytes (hESC-CM). The results showed that both benzo[a]pyrene and 1-hydroxypyrene enhanced the intracellular level of ROS and induced DNA damage. Benzo[a]pyrene also induced an expression of cell mitochondrial proapoptotic gene. Overall, the oxidative stress and DNA damage contributed to PAHs toxicity in cardiomyocytes and probably associated with heart diseases.
Key words:polycyclic aromatic hydrocarbon/
human embryonic stem cells derived cardiomyocytes/
DNA damage.

加载中
Burstyn I, Kromhout H, Partanen T, et al. Polycyclic aromatic hydrocarbons and fatal ischemic heart disease[J]. Epidemiology, 2005, 16(6):744-750
Lee M S, Magari S, Christiani D C. Cardiac autonomic dysfunction from occupational exposure to polycyclic aromatic hydrocarbons[J]. Occupational and Environmental Medicine, 2011, 68(7):474-478
Huang L, Gao D, Zhang Y, et al. Exposure to low dose benzo[a]pyrene during early life stages causes symptoms similar to cardiac hypertrophy in adult zebrafish[J]. Journal of Hazardous Materials, 2014, 276:377-382
Huang L, Wang C, Zhang Y, et al. Benzo[a]pyrene exposure influences the cardiac development and the expression of cardiovascular relative genes in zebrafish (Danio rerio) embryos[J]. Chemosphere, 2012, 87(4):369-375
Ang Y S, Rivas R N, Ribeiro A J S, et al. Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis[J]. Cell, 2016, 167(7):1734-1749
Zhang X, Chen S, Yoo S, et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death[J]. Cell, 2008, 135(6):1017-1027
Pruneda-Álvarez L G, Pérez-Vázquez F J, Ruíz-Vera T, et al. Urinary 1-hydroxypyrene concentration as an exposure biomarker to polycyclic aromatic hydrocarbons (PAHs) in Mexican women from different hot spot scenarios and health risk assessment[J]. Environmental Science and Pollution Research, 2016, 23(7):6816-6825
Hao J N, Yan B. Determination of urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanidefunctionalized metal-organic framework sensor[J]. Advanced Functional Materials, 2017, 27(6):1603856
de Oliveira Galvão M F, de Queiroz J D F, de Souza Fernandes Duarte E, et al. Characterization of the particulate matter and relationship between buccal micronucleus and urinary 1-hydroxypyrene levels among cashew nut roasting workers[J]. Environmental Pollution, 2017, 220:659-671
Ovchinnikova E, Hoes M, Ustyantsev K, et al. Modeling human cardiac hypertrophy in stem cell-derived cardiomyocytes[J]. Stem Cell Reports, 2018, 10(3):794-807
Sirenko O, Grimm F A, Ryan K R, et al. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model[J]. Toxicology and Applied Pharmacology, 2017, 322:60-74
An J, Yin L, Shang Y, et al. The combined effects of BDE47 and BaP on oxidatively generated DNA damage in L02 cells and the possible molecular mechanism[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2011, 721(2):192-198
Gómez-Mendikute A, Etxeberria A, Olabarrieta I, et al. Oxygen radicals production and actin filament disruption in bivalve haemocytes treated with benzo (a) pyrene[J]. Marine Environmental Research, 2002, 54(3-5):431-436
Zhu W, Cromie M M, Cai Q, et al. Curcumin and vitamin E protect against adverse effects of benzo[a] pyrene in lung epithelial cells[J]. PLoS One, 2014, 9(3):e92992
Yuan L, Liu J, Deng H, et al. Benzo[a]pyrene induces autophagic and pyroptotic death simultaneously in HL-7702 human normal liver cells[J]. Journal of Agricultural and Food Chemistry, 2017, 65(44):9763-9773
Stepnik M, Spryszyńska S, Smok-Pieniazek A, et al. The modulating effect of ATM, ATR, DNA-PK inhibitors on the cytotoxicity and genotoxicity of benzo[a]pyrene in human hepatocellular cancer cell line HepG2[J]. Environmental Toxicology and Pharmacology, 2015, 40(3):988-996
Wang Y, Zhai W, Wang H, et al. Benzo (a) pyrene promotes A549 cell migration and invasion through up-regulating Twist[J]. Archives of Toxicology, 2015, 89(3):451-458
Kim S M, Lee H M, Hwang K A, et al. Benzo (a) pyrene induced cell cycle arrest and apoptosis in human choriocarcinoma cancer cells through reactive oxygen speciesinduced endoplasmic reticulum-stress pathway[J]. Food and Chemical Toxicology, 2017, 107:339-348
Zhang H M, Nie J S, Li X, et al. Characteristic analysis of peripheral blood mononuclear cell apoptosis in coke oven workers[J]. Journal of Occupational Health, 2012, 54(1):44-50
Yin G, Wang X, Sun Y, et al. Bioaccumulation and oxidative stress in submerged macrophyte Ceratophyllum demersum L. upon exposure to pyrene[J]. Environmental Toxicology, 2008, 23(3):328-336
Yin Y, Jia J, Guo H Y, et al. Pyrene-stimulated reactive oxygen species generation and oxidative damage in Carassius auratus[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2014, 49(2):162-170
Shimada T, Takenaka S, Murayama N, et al. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P4502A13[J]. Xenobiotica, 2016, 46(3):1-14
Zapata-Pérez O, Gold-Bouchot G, Ortega A, et al. Effect of pyrene on hepatic cytochrome P4501A (CYP1A) expression in nile tilapia (Oreochromis niloticus)[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(4):477-485
Freitas F, Brucker N, Durgante J, et al. Urinary 1-hydroxypyrene is associated with oxidative stress and inflammatory biomarkers in acute myocardial infarction[J]. International Journal of Environmental Research and Public Health, 2014, 11(9):9024-9037
Chen Y R, Zweier J L. Cardiac mitochondria and reactive oxygen species generation[J]. Circulation Research, 2014, 114(3):524-537
Giordano F J. Oxygen, oxidative stress, hypoxia, and heart failure[J]. Journal of Clinical Investigation, 2005, 115(3):500-508
von Harsdorf R, Li P F, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis[J]. Circulation, 1999, 99(22):2934-2941
Shiizaki K, Kawanishi M, Yagi T. Modulation of benzo[a] pyrene-DNA adduct formation by CYP1 inducer and inhibitor[J]. Genes and Environment, 2017, 39(1):14
Willis A J, Indra R, Wohak L E, et al. The impact of chemotherapeutic drugs on the CYP1A1-catalysed metabolism of the environmental carcinogen benzo[a]pyrene:Effects in human colorectal HCT116 TP53(+/+), TP53(+/-) and TP53(-/-) cells[J]. Toxicology, 2018, 398-399:1-12
Bersell K, Choudhury S, Mollova M, et al. Moderate and high amounts of tamoxifen in MHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death[J]. Disease Models & Mechanisms, 2013, 6(6):1459-1469
Higo T, Naito A T, Sumida T, et al. DNA single-strand break-induced DNA damage response causes heart failure[J]. Nature Communications, 2017, 8:15104
Minamino T, Komuro I. Vascular cell senescence:Contribution to atherosclerosis[J]. Circulation Research, 2007, 100(1):15-26
Dong R, Xu X, Li G, et al. Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state[J]. PLoS One, 2013, 8(10):e77034

相关话题/细胞 胚胎 基因 电子科技大学 中国科学院