尹晓宇1,
陈浩1,
王欢1,
宋磊1,
董文静1,
赵宝全2,
于永利1,3,
董武1,
杨景峰1
1. 内蒙古民族大学动物科学技术学院, 内蒙古自治区毒物监控及毒理学重点实验室, 通辽 028000;
2. 军事科学院军事医学研究院毒物药物研究所, 抗毒药物与毒理学国家重点实验室, 北京 100850;
3. 内蒙古民族大学生命科学与食品学院, 通辽 028000
作者简介: 李明(1994-),女,硕士研究生,研究方向为药理及毒理学,E-mail:liming66cherry@163.com.
基金项目: 基国家自然科学基金资助项目(21567019,81360508);内蒙古自治区自然科学基金资助项目(2018MS08033;2020MS08103);内蒙古自治区高等学校科学研究项目(NJZC17203);内蒙古草原英才2020年度滚动支持项目(董武);内蒙古民族大学科学研究基金资助项目(NMDGP1505);内蒙古自治区毒物监控及毒理学重点实验室开放项目(MDK2019074,MDK2019076);蒙药研发国家地方联合工程研究中心开放基金资助项目(MDK2019051)中图分类号: X171.5
Effect of Galaxolide on Thyroid Hormones in Zebrafish Embryos
Li Ming1,Yin Xiaoyu1,
Chen Hao1,
Wang Huan1,
Song Lei1,
Dong Wenjing1,
Zhao Baoquan2,
Yu Yongli1,3,
Dong Wu1,
Yang Jingfeng1
1. Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China;
2. State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China;
3. College of Life Science and Food, Inner Mongolia University for Nationalities, Tongliao 028000, China
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:佳乐麝香(galaxolide,HHCB)作为主要的多环麝香之一,被广泛应用于药品和个人护理品(pharmaceuticals and personal care products,PPCPs)中,残留在环境中造成污染,并在生物体内富集,对水生生物及人类健康造成潜在威胁。为探究环境浓度下HHCB的环境危害,选用斑马鱼(Danio rerio)作为模式动物,监测了HHCB暴露下其死亡率、孵化率、心率、心囊面积、甲状腺素含量和甲状腺激素关联基因表达量的变化,并探究相关毒理机制。研究结果表明,HHCB可导致斑马鱼胚胎死亡率增加、心率降低、孵化率下降以及甲状腺素关联基因Dio2、Thrα和Thrβ的显著变化。0.005 mmol·L-1 HHCB可引起总三碘甲状腺原氨酸(TT3)升高和总四碘甲状腺原氨酸(TT4)的显著降低。通过以上研究可知,HHCB可造成斑马鱼胚胎甲状腺激素分泌和调节的紊乱。
关键词: 佳乐麝香/
斑马鱼胚胎/
急性暴露/
发育毒性/
甲状腺激素
Abstract:As one of the main polycyclic musk, galaxolide (HHCB) is widely used in pharmaceuticals and personal care products (PPCPs), the residues cause pollution in the environment and are enriched in organisms, posing potential threats to aquatic organisms and human health. In order to investigate the toxic effects of HHCB at environmental concentrations, zebrafish (Danio rerio) was used as an animal model to monitor the changes in mortality, hatchability, heart rate, heart sac area, thyroxine content, and thyroid-related gene expression after HHCB treatment, and explore the toxicological mechanism. The results showed that the exposure of HHCB (0.005 mmol·L-1) caused increased zebrafish embryos mortality, decreased heart rate, lowered hatching rate and produced significant changes in thyroid hormone-related genes Dio2, Thrα, and Thrβ, and significantly decreased thyroid hormone triiodothyronine (TT3) and increased thyroxine (TT4) in zebrafish embryos. The above studies indicated that exposure of HHCB can cause disorders in thyroid hormone secretion and regulation in developmental zebrafish embryos.
Key words:HHCB/
zebrafish embryo/
acute exposure/
developmental toxicity/
thyroid hormone.
Wu Q, Li H, Leng Y, et al. Determination of muscone in rats plasma following oral administration of artificial musk using of combined headspace gas chromatography-mass spectrometry[J]. Journal of Spectroscopy, 2014, 5(5):1-5 |
van der Burg B, Schreurs R, van der Linden S, et al. Endocrine effects of polycyclic musks:Do we smell a rat?[J]. International Journal of Andrology, 2008, 31(2):188-193 |
Tseng W J, Tsai S W. Assessment of dermal exposures for synthetic musks from personal care products in Taiwan[J]. Science of the Total Environment, 2019, 669:160-167 |
Lu Y, Yuan T, Wang W, et al. Concentrations and assessment of exposure to siloxanes and synthetic musks in personal care products from China[J]. Environmental Pollution, 2011, 159(12):3522-3528 |
Wong F, Robson M, Melymuk L, et al. Urban sources of synthetic musk compounds to the environment[J]. Environmental Science:Processes & Impacts, 2019, 21(1):74-88 |
Fromme H, Otto T, Pilz K. Polycyclic musk fragrances in different environmental compartments in Berlin (Germany)[J]. Water Research, 2001, 35(1):121-128 |
Homem V, Magalhães I, Alves A, et al. Assessing seasonal variation of synthetic musks in beach sands from Oporto coastal area:A case study[J]. Environmental Pollution, 2017, 226:190-197 |
Groz M P, Bueno M M, Rosain D, et al. Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC-MS/MS[J]. The Science of the Total Environment, 2014, 49:162-169 |
Huang W, Xie Z, Yan W, et al. Occurrence and distribution of synthetic musks and organic UV filters from riverine and coastal sediments in the Pearl River estuary of China[J]. Marine Pollution Bulletin, 2016, 111:153-159 |
Rimkus G, Wolf M. Polycyclic musk fragrances in human adipose tissue and human milk[J]. Chemosphere, 1996, 33(10):2033-2043 |
Carlsson G, Orn S, Andersson P, et al. The impact of musk ketone on reproduction in zebrafish (Danio rerio)[J]. Marine Environmental Research, 2000, 50:237-241 |
Rimkus G G, Wolf M. Nitro musk fragrances in biota from freshwater and marine environment[J]. Chemosphere, 1995, 30:641-651 |
Qu L, Zhao C, Wang C, et al. Anovel zebrafish (Danio rerio) assay for assessing musk ambrette-induced toxicity[J]. Bulletin of Environmental Contamination Toxicology, 2018, 101(1):80-85 |
Carlsson G, Norrgren L. Synthetic musk toxicity to early life stages of zebrafish (Danio rerio)[J]. Archives of Environmental Contamination Toxicology, 2004, 46(1):102-105 |
Pablos M V, Jiménez M,San Segundo L, et al. Effects of dietary exposure of polycyclic musk HHCB on the metamorphosis of Xenopus laevis[J]. Environmental Toxicology and Chemistry, 2016, 35(6):1428-1435 |
Porazzi P, Calebiro D, Benato F, et al. Thyroid gland development and function in the zebrafish model[J]. Molecular and Cellular Endocrinology, 2009, 312(1-2):14-23 |
Wieshammer S, Keck F, Waitzinger J, et al. Acute hypothyroidism slows the rate of left ventricular diastolic relaxation[J]. Canadian Journal of Physiology Pharmacology, 1989, 67(9):1007-1010 |
Schultz M, Kistorp C, Raymond I, et al. Cardiovascular events in thyroid disease:A population based, prospective study[J]. Hormone Metabolic Research, 2011, 43(9):653-659 |
Jabbar A, Iervasi G, Pingitore A, et al. Thyroid hormones and cardiovascular disease[J]. Nature Reviews, 2017, 14:39-55 |
Lein I R K, Jamaa K A O. Thyroid hormone and the cardiovascular system[J]. Mechanisms of Disease, 2001, 344:501-507 |
Sharma D, Sehgal P, Mathew S, et al. A genome-wide map of circular RNAs in adult zebrafish[J]. Scientific Reports, 2019, 9(1):3432 |
Howe K, Clark M, Torroja C, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446):498-503 |
Kari G, Rodeck U, Dicker A. Zebrafish:An emerging model system for human disease and drug discovery[J]. Clinical Pharmacology Therapeutics, 2007, 82(1):70-80 |
Shin J, Fishman M. From zebrafish to human:Modular medical models[J]. Annual Review of Genomics Human Genetics, 2002, 3:311-340 |
Saleem S, Kannan R. Zebrafish:An emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery[J]. Cell Death Discovery, 2018, 4:45 |
Staudt D, Stainier D. Uncovering the molecular and cellular mechanisms of heart development using the zebrafish[J]. Annual Review of Genetics, 2012, 46:397-418 |
Wang X, Yu Q, Wu Q, et al. Genetic interaction between pku300 and fbn2b controls endocardial cell proliferation and valve development in zebrafish[J]. Journal of Cell Science, 2013, 126:1381-1391 |
Rihel J, Ghosh M. Drug Discovery and Evaluation:Pharmacological Assays[M]. Springer, 2016:4071-4135 |
Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer's disease research[J]. Frontiers in Genetics, 2014, 5:1-10 |
Matthew G, Bailey J T, Hyde R D, et al. The zebrafish as a model for complex tissue regeneration[J]. Trends in Genetics, 2013, 29(11):611-620 |
Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease[J]. Cardiovascular Research, 2011, 91(2):279-288 |
Dong W, Wang F, Fang M, et al. Use of biological detection methods to assess dioxin-like compounds in sediments of Bohai Bay, China[J]. Ecotoxicology and Environmental Safety, 2019, 173:339-346 |
Roosens L, Covaci A, Neels H. Concentrations of synthetic musk compounds in personal care and sanitation products and human exposure profiles through dermal application[J]. Chemosphere, 2007, 69(10):1540-1547 |
Breitholtz M, Wollenberger L, Dinan L. Effects of four synthetic musks on the life cycle of the harpacticoid copepod Nitocra spinipes[J]. Aquatic Toxicology, 2003, 63(2):103-118 |
Carlsson G, Norrgren L. Synthetic musk toxicity to early life stages of zebrafish (Danio rerio)[J]. Archives of Environmental Contamination Toxicology, 2004, 46(1):102-105 |
Parolini M, Magni S, Traversi I, et al. Environmentally relevant concentrations of galaxolide (HHCB) and tonalide (AHTN) induced oxidative and genetic damage inDreissena polymorpha[J]. Journal of Hazardous Materials, 2015, 285:1-10 |
Yamauchi R, Ishibashi H, Hirano M, et al. Effects of synthetic polycyclic musks on estrogen receptor, vitellogenin, pregnane X receptor, and cytochrome P4503A gene expression in the livers of male medaka (Oryzias latipes)[J]. Aquatic Toxicology, 2008, 90(4):261-268 |
Li M, Yao L, Chen H, et al. Chiral toxicity of muscone to embryonic zebrafish heart[J]. Aquatic Toxicology, 2020, 222:105451 |
Wieshammer S, Keck F S, Waitzinger J, et al. Acute hypothyroidism slows the rate of left ventricular diastolic relaxation[J]. Canadian Journal of Physiology and Pharmacology, 1989, 67(9):1007-1010 |
Cooper D S. Approach to the patient with subclinical hyperthyroidism[J]. The Journal of Clinical Endocrinology & Metabolism, 2007, 92(1):3-9 |
Iannone D. The cardiovascular system in hypothyroidism[J]. Policlinico Prat, 1967, 74(15):497-507 |
Heijlen M, Houbrechts A M, Darras V M. Zebrafish as a model to study peripheral thyroid hormone metabolism in vertebrate development[J]. General and Comparative Endocrinology, 2013, 188:289-296 |