删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

环境污染物与肠道菌群互作关系的研究进展

本站小编 Free考研考试/2021-12-30

冯宇希,
冯乃宪,
陈昕,
王一泽,
郭静婕,
莫测辉,
暨南大学生命科学与技术学院, 广州 510632
作者简介: 冯宇希(1990-),男,博士,研究方向为环境毒理学,E-mail:yu-xifeng@foxmail.com.
通讯作者: 莫测辉,tchmo@jnu.edu.cn
基金项目: 广东省应用型科技研发专项资金资助项目(2016B020242005)


中图分类号: X171.5


Interaction between Environmental Pollutants and Gut Microbiota: A Review

Feng Yuxi,
Feng Naixian,
Chen Xin,
Wang Yize,
Guo Jingjie,
Mo Cehui,
College of Life Science and Technology, Jinan University, Guangzhou 510632, China
Corresponding author: Mo Cehui,tchmo@jnu.edu.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(94)
相关文章
施引文献
资源附件(0)
访问统计

摘要:随着城市化和工业化的快速发展,大量污染物进入到环境中,这些污染物在食物链中传递和放大,最终对人体健康产生危害。环境污染物通过摄食进入消化道,影响肠道微生物稳态,进而危害宿主健康。目前大部分研究主要集中在环境污染物对肠道微生物的丰富度和多样性的影响,而对环境污染物、肠道微生物和宿主健康互作关系的研究鲜有报道。本文综述了环境污染物包括重金属、持久性有机污染物、农药、微塑料、抗生素及其抗性基因等对肠道微生物菌群结构及其代谢活动的影响,阐明了环境污染物诱导肠道菌群失衡而致病的关键步骤,为肠道微生物毒理学评价提供新的研究思路。
关键词: 环境污染物/
肠道微生物/
毒性评价/
宿主健康

Abstract:With the rapid development of urbanization and industrialization, a great deal of toxic contaminants are introduced into the environments, posing an increasing risk to human health. Recently, many studies have demonstrated the profound relationships between gut microbiota (GM) and host health. However, very limited information are available on the interactions among pollutants, GM, and host health. This paper reviews the possible effects of environmental pollutants including heavy metals, persistent organic pollutants, microplastics, antibiotics and resistance genes on GM and their subsequent impacts on host health. Furthermore, we propose the key steps/models of GM disorder induced by environmental pollutants, providing a new insight into interaction between environmental pollutants and GM.
Key words:environmental pollutants/
gut microbiota/
toxicological evaluation/
host health.

加载中
Whitman W B, Coleman D C, Wiebe W J. Prokaryotes:The unseen majority[J]. Proceedings of the National Academy of Sciences, 1998, 95(12):6578-6583
Roca-Saavedra P, Mendez-Vilabrille V, Miranda J M, et al. Food additives, contaminants and other minor components:Effects on human gut microbiota-A review[J]. Journal of Physiology and Biochemistry, 2018, 74(1):69-83
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59
Yatsunenko T, Rey F E, Manary M J, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222
Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728):1635-1638
Ouwehand A, Vesterlund S. Health aspects of probiotics[J]. IDrugs The Investigational Drugs Journal, 2003, 6(6):573-580
Aron-Wisnewsky J, Doré J, Clement K. The importance of the gut microbiota after bariatric surgery[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(10):590
Goodrich J K, Waters J L, Poole A C, et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4):789-799
Zuo T, Kamm M A, Colombel J F, et al. Urbanization and the gut microbiota in health and inflammatory bowel disease[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15:440-452
Frazier T H, DiBaise J K, McClain C J. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury[J]. Journal of Parenteral and Enteral Nutrition, 2011, 35(5_suppl):14S-20S
Chen L, Hu C, Lai N L S, et al. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish[J]. Environmental Pollution, 2018, 240:17-26
Jakobsson H E, Rodríguez-Piñeiro A M, Schütte A, et al. The composition of the gut microbiota shapes the colon mucus barrier[J]. EMBO Reports, 2015, 16(2):164-177
Sánchez B, Delgado S, Blanco-Míguez A, et al. Probiotics, gut microbiota, and their influence on host health and disease[J]. Molecular Nutrition & Food Research, 2017, 61(1):1600240
Sekirov I, Russell S L, Antunes L C M, et al. Gut microbiota in health and disease[J]. Physiological Reviews, 2010, 90(3):859-904
王全楚, 步子恒, 李青上. 肠肝轴的现代概念及其在肝脏疾病中的作用[J]. 胃肠病学和肝病学杂志, 2015, 24(9):1155-1158Wang Q C, Bu Z H, Li Q S. The current role of gut-liver axis in liver diseases[J]. Chinese Journal of Gastroenterology & Hepatology, 2015, 24(9):1155-1158(in Chinese)
Jin Y, Wu S, Zeng Z, et al. Effects of environmental pollutants on gut microbiota[J]. Environmental Pollution, 2017, 222:1-9
Gasmi T, Khouni I, Ghrabi A. Assessment of heavy metals pollution using multivariate statistical analysis methods in Wadi El Bey (Tunisia)[J]. Desalination and Water Treatment, 2016, 57(46):22152-22165
Nordberg G F, Fowler B A, Nordberg M. Handbook on the Toxicology of Metals[M]. ScienceDirect, 2014:265-267
Richardson J B, Dancy B C, Horton C L, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota[J]. Scientific Reports, 2018, 8(1):6578
Liu Y, Li Y, Liu K, et al. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract[J]. PloS One, 2014, 9(2):e85323
Zhang W, Guo R, Yang Y, et al. Long-term effect of heavy-metal pollution on diversity of gastrointestinal microbial community of Bufo raddei[J]. Toxicology Letters, 2016, 258:192-197
Zhai Q, Li T, Yu L, et al. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice[J]. Science Bulletin, 2017, 62(12):831-840
Yang H, Wang J, Lv Z, et al. Metatranscriptome analysis of the intestinal microorganisms in Pardosa pseudoannulata in response to cadmium stress[J]. Ecotoxicology and Environmental Safety, 2018, 159:1-9
Jafarpour D, Shekarforoush S S, Ghaisari H R, et al. Impact of synbiotic diets including inulin, Bacillus coagulans and Lactobacillus plantarum on intestinal microbiota of rat exposed to cadmium and mercury[J]. Veterinary Science Development, 2015, 5(2):6061
Kim M, Qie Y, Park J, et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host & Microbe, 2016, 20(2):202-214
Breton J, Daniel C, Dewulf J, et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure[J]. Toxicology Letters, 2013, 222(2):132-138
Ilett K F, Tee L B, Reeves P T, et al. Mebolism of drugs and other xenobiotics in the gut lumen and wall[J]. Pharmacology & Therapeutics, 1990, 46(1):67-93
Kashyap P C, Marcobal A, Ursell L K, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice[J]. Gastroenterology, 2013, 144(5):967-977
Dong X, Shulzhenko N, Lemaitre J, et al. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh[J]. PloS One, 2017, 12(12):e0188487
Lu K, Abo R P, Schlieper K A, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice:An integrated metagenomics and metabolomics analysis[J]. Environmental Health Perspectives, 2014, 122(3):284-291
Guo X, Liu S, Wang Z, et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron[J]. Chemosphere, 2014, 112:1-8
Yu H, Wu B, Zhang X X, et al. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota[J]. Environmental Science & Technology, 2016, 50(13):7189-7197
Chi L, Bian X, Gao B, et al. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome[J]. Toxicological Sciences, 2017, 160(2):193-204
Singh P, Chowdhuri D K. Environmental presence of hexavalent but not trivalent chromium causes neurotoxicity in exposed Drosophila melanogaster[J]. Molecular Neurobiology, 2017, 54(5):3368-3387
Ivankovic S, Preussmann R. Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats[J]. Food and Cosmetics Toxicology, 1975, 13(3):347-351
Upreti R, Shrivastava R, Chaturvedi U. Gut microflora & toxic metals:Chromium as a model[J]. Indian Journal of Medical Research, 2004, 119:49-59
Wu G, Xiao X, Feng P, et al. Gut remediation:A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1[J]. Scientific Reports, 2017, 7(1):15000
Beier E E, Holz J D, Sheu T J, et al. Elevated lifetime lead exposure impedes osteoclast activity and produces an increase in bone mass in adolescent mice[J]. Toxicological Sciences, 2015, 149(2):277-288
Xia J, Lu L, Jin C, et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 209:1-8
Gao B, Chi L, Mahbub R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways[J]. Chemical Research in Toxicology, 2017, 30(4):996-1005
Younan S, Sakita G Z, Albuquerque T R, et al. Chromium(Ⅵ) bioremediation by probiotics[J]. Journal of the Science of Food and Agriculture, 2016, 96(12):3977-3982
Potera C. POPs and gut microbiota:Dietary exposure alters ratio of bacterial species[J]. Environmental Health Perspectives, 2015, 123(7):A187
Stegeman J J, Lech J J. Cytochrome P-450 monooxygenase systems in aquatic species:Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure[J]. Environmental Health Perspectives, 1991, 90:101-109
Van de Wiele T, Vanhaecke L, Boeckaert C, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites[J]. Environmental Health Perspectives, 2004, 113(1):6-10
Bagi A, Riiser E S, Molland H S, et al. Gastrointestinal microbial community changes in Atlantic cod (Gadus morhua) exposed to crude oil[J]. BMC Microbiology, 2018, 18(1):25
Ribière C, Peyret P, Parisot N, et al. Oral exposure to environmental pollutant benzo[a] pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model[J]. Scientific Reports, 2016, 6:31027
Defois C, Ratel J, Denis S, et al. Environmental pollutant benzo[a] pyrene impacts the volatile metabolome and transcriptome of the human gut microbiota[J]. Frontiers in Microbiology, 2017, 8:1562
Zhang L, Nichols R G, Correll J, et al. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation[J]. Environmental Health Perspectives, 2015, 123(7):679-688
Chi Y, Lin Y, Zhu H, et al. PCBs-high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice[J]. Environmental Pollution, 2018, 239:332-341
Chen L, Zhang W, Hua J, et al. Dysregulation of intestinal health by environmental pollutants:Involvement of the estrogen receptor and aryl hydrocarbon receptor[J]. Environmental Science & Technology, 2018, 52(4):2323-2330
Nicholson J K, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086):1262-1267
Gao B, Bian X, Mahbub R, et al. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions[J]. Environmental Health Perspectives, 2016, 125(2):198-206
Lozano V L, Defarge N, Rocque L M, et al. Sex-dependent impact of Roundup on the rat gut microbiome[J]. Toxicology Reports, 2018, 5:96-107
Neuman H, Debelius J W, Knight R, et al. Microbial endocrinology:The interplay between the microbiota and the endocrine system[J]. FEMS Microbiology Reviews, 2015, 39(4):509-521
Lakritz J R, Poutahidis T, Mirabal S, et al. Gut bacteria require neutrophils to promote mammary tumorigenesis[J]. Oncotarget, 2015, 6(11):9387
Erdman S E, Poutahidis T. Gut bacteria and cancer[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2015, 1856(1):86-90
Motta E V S, Raymann K, Moran N A. Glyphosate perturbs the gut microbiota of honey bees[J]. Proceedings of the National Academy of Sciences, 2018, 115(41):10305-10310
Condette C J, Khorsi-Cauet H, Morlière P, et al. Increased gut permeability and bacterial translocation after chronic chlorpyrifos exposure in rats[J]. PLoS One, 2014, 9(7):e102217
Liu Q, Shao W, Zhang C, et al. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice[J]. Environmental Pollution, 2017, 226:268-276
Lukowicz C, Ellero-Simatos S, Régnier M, et al. Metabolic effects of a chronic dietary exposure to a low-dose pesticide cocktail in mice:Sexual dimorphism and role of the constitutive androstane receptor[J]. Environmental Health Perspectives, 2018, 126(6):067007
Brandt K K, Amézquita A, Backhaus T, et al. Ecotoxicological assessment of antibiotics:A call for improved consideration of microorganisms[J]. Environment International, 2015, 85:189-205
Wiström J, Norrby S R, Myhre E B, et al. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients:A prospective study[J]. Journal of Antimicrobial Chemotherapy, 2001, 47(1):43-50
Roca-Saavedra P, Rodriguez J A, Lamas A, et al. Low-dosage antibiotic intake can disturb gut microbiota in mice[J]. CyTA-Journal of Food, 2018, 16(1):672-678
Yin J, Zhang X X, Wu B, et al. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut[J]. Ecotoxicology, 2015, 24(10):2125-2132
Panda S, Casellas F, Vivancos J L, et al. Short-term effect of antibiotics on human gut microbiota[J]. PloS One, 2014, 9(4):e95476
Schokker D, Zhang J, Vastenhouw S A, et al. Long-lasting effects of early-life antibiotic treatment and routine animal handling on gut microbiota composition and immune system in pigs[J]. PLoS One, 2015, 10(2):e0116523
Behr C, Ramírez-Hincapié S, Cameron H, et al. Impact of lincosamides antibiotics on the composition of the rat gut microbiota and the metabolite profile of plasma and feces[J]. Toxicology Letters, 2018, 296:139-151
Miller S, Wu R, Oremus M. The association between antibiotic use in infancy and childhood overweight or obesity:A systematic review and meta-analysis[J]. Obesity Reviews, 2018, 19(11):1463-1475
Loewen K, Monchka B, Mahmud S M, et al. Prenatal antibiotic exposure and childhood asthma:A population-based study[J]. European Respiratory Journal, 2018, 52(1):1702070
Gao K, Pi Y, Mu C L, et al. Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets[J]. Journal of Neurochemistry, 2018, 146(3):219-234
Neuman H, Forsythe P, Uzan A, et al. Antibiotics in early life:Dysbiosis and the damage done[J]. FEMS Microbiology Reviews, 2018, 42(4):489-499
Mitre E, Susi A, Kropp L E, et al. Association between use of acid-suppressive medications and antibiotics during infancy and allergic diseases in early childhood[J]. JAMA Pediatrics, 2018, 172(6):e180315
Hu Y, Yang X, Qin J, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota[J]. Nature Communications, 2013, 4:2151
Feng J, Li B, Jiang X, et al. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses[J]. Environmental Microbiology, 2018, 20(1):355-368
Zhu D, An X L, Chen Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil Collembolan[J]. Environmental Science & Technology, 2018, 52(5):3081-3090
Xiong W, Wang Y, Sun Y, et al. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes[J]. Microbiome, 2018, 6(1):34
Jakobsson H E, Jernberg C, Andersson A F, et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome[J]. PloS One, 2010, 5(3):e9836
Law K L, Thompson R C. Microplastics in the seas[J]. Science, 2014, 345(6193):144-145
Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454
Pedã C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics:Preliminary results[J]. Environmental Pollution, 2016, 212:251-256
Cao D, Wang X, Luo X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil[C]. Bangkok, Thailand:IOP Conference Series:Earth and Environmental Science, 2017
Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments:Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141
Zhu B K, Fang Y M, Zhu D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil Oligochaete Enchytraeus crypticus[J]. Environmental Pollution, 2018, 239:408-415
Mendoza L M R, Jones P R. Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre[J]. Environmental Chemistry, 2015, 12(5):611-617
Rochman C M, Hentschel B T, Teh S J. Long-term sorption of metals is similar among plastic types:Implications for plastic debris in aquatic environments[J]. PloS One, 2014, 9(1):e85433
Lu L, Wan Z, Luo T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631:449-458
Jin Y, Lu L, Tu W, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649:308-317
王泓鸥, 董四君. 肠道微生物受环境污染的影响及其对宿主疾病的调控作用[J]. 生态毒理学报, 2017, 12(3):110-119Wang H O, Dong S J. Influences of the environment pollution on the intestinal microbiota and its regulations on host diseases[J]. Asian Journal of Ecotoxicology, 2017, 12(3):110-119(in Chinese)
Spanogiannopoulos P, Turnbaugh P J. Broad collateral damage of drugs against the gut microbiome[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(8):457-458
Kéfi S, Domínguez-García V, Donohue I, et al. Advancing our understanding of ecological stability[J]. Ecology Letters, 2019, 22(9):1349-1356
金泰廙. 毒理学原理和方法[M]. 上海:复旦大学出版社, 2012:130-139
Sommer F, Anderson J M, Bharti R, et al. The resilience of the intestinal microbiota influences health and disease[J]. Nature Reviews Microbiology, 2017, 15(10):630
MacPherson C W, Mathieu O, Tremblay J, et al. Gut bacterial microbiota and its resistome rapidly recover to basal state levels after short-term amoxicillin-clavulanic acid treatment in healthy adults[J]. Scientific Reports, 2018, 8(1):11192
Kim S W, Chae Y, Kwak J I, et al. Viability of gut microbes as a complementary earthworm biomarker of metal exposure[J]. Ecological Indicators, 2016, 60:377-384

相关话题/环境 微生物 健康 疾病 博士