王锦1,
曹夏1,
张容端1,
刘雅雯1,
许东东2,3
1. 宝鸡文理学院地理与环境学院, 陕西省灾害监测与机理模拟重点实验室, 宝鸡 721013;
2. 中国科学院地球环境研究所, 中国科学院气溶胶化学与物理重点实验室, 西安 710061;
3. 西安地球环境创新研究院, 西安 710061
作者简介: 周变红(1976-),女,博士,副教授,研究方向为大气环境化学及环境健康风险评估,E-mail:bhz620@163.com.
通讯作者: 周变红,bhz620@163.com ;
基金项目: 大气重污染成因与治理攻关项目(DQGG-05-36);陕西省自然科学基础研究项目(2019JQ4041);中国科学院气溶胶化学物理重点实验室项目(KLACP1903);陕西省科技厅项目(2018ZDCXL-SF-02-04);宝鸡市科技局项目(2018-JH-16);宝鸡文理学院重点项目(ZK2017038,ZK2018049);宝鸡文理学院研究生创新科研项目(YJSCX20YB30)中图分类号: X171.5
Characteristics and Health Risk Assessments of Elements in PM2.5 during Winter in Baoji City
Zhou Bianhong1,2,,,Wang Jin1,
Cao Xia1,
Zhang Rongduan1,
Liu Yawen1,
Xu Dongdong2,3
1. Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, College of Geography & Environment, Baoji University of Arts & Sciences, Baoji 721013, China;
2. Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China;
3. Xi'an Earth Environment Innovation Research Institute, Xi'an 710061, China
Corresponding author: Zhou Bianhong,bhz620@163.com ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为了研究宝鸡市冬季PM2.5颗粒物中元素的污染特征、来源及其健康风险,于2018年11月15日至2019年1月31日进行PM2.5样品采集,并利用能量色散X射线荧光分析仪(ED-XRF)对Ca、K、Fe、Al、Na、Mg、Zn、Ti、Mn、Pb、Cu、Ba、Cr、V、Sc、Ni、Se和Co等18种元素进行检测。结果表明,宝鸡市冬季PM2.5平均质量浓度为95.5 μg·m-3,陈仓区环境保护局、宝鸡文理学院和监测站平均质量浓度分别为107.0、86.5和93.0 μg·m-3,均超过国家二级标准。运用富集因子法和聚类分析法探究各元素来源,富集因子显示Zn和Pb的富集因子>100,主要来自人为源;Ca、Fe、Na、Mg、Mn、Ba、V和Sc的富集因子<10,主要来源于自然源;Cu富集因子介于10~100,受人为源和自然源共同作用;聚类分析显示K主要来自于生物质燃烧;Al、Fe和Ca主要来自于扬尘源;Zn、Pb、Mn、Cu、Ti、Cr、Ni和Co主要来自于燃煤源、交通源和工业源。利用美国环境保护局的健康风险评价模型对元素进行健康风险评估,结果表明,致癌及非致癌风险在不同群体中均表现为儿童 > 成年男性 > 成年女性;Pb、V、Ba、Mn、Zn、Ni、Cr、Co和Cu的非致癌风险均<1,对人体非致癌风险较小;Cr的致癌风险在儿童群体中介于10-6~10-4之间,对儿童健康有潜在致癌风险。
关键词: PM2.5/
元素/
健康风险/
富集因子/
聚类分析
Abstract:To study the pollution characteristics, sources of element and their health risk levels of elements in winter atmospheric particulate matter in Baoji City, PM2.5 samples were collected from 2018-11-15 to 2019-01-31, and the concentrations of 18 elements including Ca, K, Fe, Al, Na, Mg, Zn, Ti, Mn, Pb, Cu, Ba, Cr, V, Sc, Ni, Se and Co were detected using energy dispersive X-ray fluorescence analyzer (ED-XRF). The results showed that the averaged mass concentration of PM2.5 in winter in Baoji City was 95.5 μg·m-3. The averaged PM2.5 levels in Environmental Protection Agency of Chencang District, Baoji University of Arts and Sciences, and Monitoring Station were 107.0, 86.5 and 93.0 μg·m-3 respectively, which all exceed the national secondary standard. The enrichment factors (EFs) method and cluster analysis method were used to explore element sources. EFs results showed that Zn and Pb were mainly from anthropogenic sources, while Ca, Fe, Na, Mg, Mn, Ba, V and Sc were mainly from natural sources. The EFCu ranged from 10 to 100, suggesting that Cu was impacted by both human and natural sources. Cluster analysis showed that K was mainly from biomass burning, Al, Fe and Ca were mainly from dust sources, and Zn, Pb, Cu, Mn, Ti, Cr, Ni and Co were mainly from coal combustion, traffic and industrial sources. The health risk assessment of elements using the US National Environmental Protection Agency’s health risk evaluation model showed that both carcinogenic and non-carcinogenic risks were present as children > adult males > adult females. The non-carcinogenic risks of Pb, V, Ba, Mn, Zn, Ni, Co, Cr and Cu were all less than 1, indicating low non-carcinogenic risks to human being. The carcinogenic risk of Cr in children is between 10-6~10-4, which has potential carcinogenic risk to children’s health.
Key words:PM2.5/
element/
health risks/
enrichment factor/
cluster analysis.
Jiang N, Yin S, Guo Y, et al. Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China[J]. Atmospheric Pollution Research, 2018, 9(2):309-321 |
Qi M, Zhu X, Du W, et al. Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing[J]. Environmental Pollution, 2017, 220:704-712 |
Chen P, Bi X, Zhang J, et al. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin,China[J]. Particuology, 2015, 20(3):104-109 |
刘威杰, 石明明, 程铖, 等. 夏季大气PM2. 5中元素特征及源解析:以华中地区-平顶山-随州-武汉为例[J]. 环境科学, 2020, 41(1):23-30Liu W J, Shi M M, Cheng C, et al. Characteristics and sources of elements in PM2.5 during summer for three typical cities in Pingdingshan-Suizhou-Wuhan, Central China[J]. Environmental Science, 2020, 41(1):23-30(in Chinese) |
张国忠, 潘月鹏, 田世丽, 等. 北京城区大气金属元素干湿沉降特征[J]. 环境科学, 2019, 40(6):2493-2500Zhang G Z, Pan Y P, Tian S L, et al. Concurrent measurement of wet and bulk deposition of trace metals in urban Beijing[J]. Environmental Science, 2019, 40(6):2493-2500(in Chinese) |
曹庆一, 钱雅慧, 梁汉东, 等. 乌达-乌斯太工业园大气颗粒物中汞的形态及空间分布特征[J]. 中国环境科学, 2019, 39(12):4989-4998Cao Q Y, Qian Y H, Liang H D, et al. The species and spatial distribution characteristics of atmospheric particulate mercury in Wuda-Wusitai Industrial Park, China[J]. China Environmental Science, 2019, 39(12):4989-4998(in Chinese) |
郑晓霞, 赵文吉, 郭逍宇. 北京大气降尘中微量元素的空间变异[J]. 中国环境科学, 2015, 35(8):2251-2260Zheng X X, Zhao W J, Guo X Y. Spatial variations of airborne dust trace elements in Beijing[J]. China Environmental Science, 2015, 35(8):2251-2260(in Chinese) |
何瑞东, 张轶舜, 陈永阳. 郑州市某生活区大气PM2.5中重金属污染特征及生态、健康风险评估[J]. 环境科学, 2019, 40(11):4774-4782He R D, Zhang Y S, Chen Y Y. Heavy metal pollution characteristics and ecological and health risk assessment of atmospheric PM2.5 in a living area of Zhengzhou City[J]. Environmental Science, 2019, 40(11):4774-4782(in Chinese) |
张强. 宝鸡市产业生态转型与循环经济建设[J]. 知识经济, 2015(5):33 |
王恭, 赵义文, 刘辉. 宝鸡市"十四五"时期产业结构优化转型升级的思考[J]. 宝鸡社会科学, 2020(1):19-22 |
赵阿玲, 刘引鸽, 王艳, 等. 宝鸡地区霾日的时空变化特征及原因分析[J]. 环境科学导刊, 2017, 36(3):69-75Zhao A L, Liu Y G, Wang Y, et al. Spatial and temporal variations of hazy day and its influencing factors in Baoji region[J]. Environmental Science Survey, 2017, 36(3):69-75(in Chinese) |
武洋洋, 周变红, 赵阿玲, 等. 宝鸡市区大气污染物浓度特征及与气象要素的关系[J]. 江西农业学报, 2017, 29(6):100-104Wu Y Y, Zhou B H, Zhao A L, et al. Characteristics of atm ospheric pollutant concentration in urban area of Baoji and their relationship with meteorological factors[J]. Acta Agricuhurae Jiangxi, 2017, 29(6):100-104(in Chinese) |
陈代妍, 周变红, 武洋洋. 宝鸡市春季PM2.5、PM10、SO2、NO2污染现状分析[J]. 环境科学导刊, 2016, 35(5):50-54Chen D Y, Zhou B H, Wu Y Y. Pollution situation of PM2.5, PM10, SO2 and CO in Spring in Baoji[J]. Environmental Science Survey, 2016, 35(5):50-54(in Chinese) |
张红芳, 王伟平, 范锴. 宝鸡市区PM10和PM2.5中5种重金属元素的大气污染特征研究[J]. 宝鸡文理学院学报:自然科学版, 2015, 35(2):70-76Zhang H F, Wang W P, Fan K. Research on pollution characteristics of 5 kinds of heavy metals in PM10 and PM2.5 in Baoji City[J]. Journal of Baoji University of Arts and Sciences:Natural Science, 2015, 35(2):70-76(in Chinese) |
任源鑫, 张海宁, 周旗, 等. 宝鸡市水资源脆弱性评价[J]. 水资源与水工程学报, 2019, 30(3):119-126Ren Y X, Zhang H N, Zhou Q, et al. Evaluation on water resources vulnerability of Baoji City[J]. Journal of Water Resources & Water Engineering, 2019, 30(3):119-126(in Chinese) |
张锡凯. 工业发展对宝鸡城市空间演变的作用途径及机理研究[D]. 西安:西安建筑科技大学, 2017:41 Zhang X K. Research on the way and mechanism of industrial development to the evolution of urban space in Baoji[D].Xi'an:Xi'an University of Architecture and Technology, 2017:41(in Chinese) |
中华人民共和国国家环境保护部. HJ 653-2013. 环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法[S]. 北京:中国环境科学出版社, 2015 |
Shen Z T, Zhang J Z, Hou D Y, et al. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue[J]. Environment International, 2019, 122:357-362 |
张宝贵, 郭爱红, 周遗品. 环境化学[M]. 武汉:华中科技大学出版社, 2018:278 |
Tan J H, Duan J C, Ma Y L, et al. Source of atmospheric heavy metals in winter in Foshan, China[J]. The Science of the Total Environment, 2014, 493:262-270 |
王振, 余益军, 徐圃青, 等. 基于快速聚类方法分析常州市区PM2.5的统计特性[J]. 环境科学, 2016, 37(10):3723-3729Wang Z, Yu Y J, Xu P Q, et al. Statistical characteristics of urban Changzhou PM2.5 based on k-means analysis[J]. Environmental Science, 2016, 37(10):3723-3729(in Chinese) |
United States Environmental Protection Agency (US EPA). Exposure Factors Handbook 2011 Edition (Final Report). EPA/600/R-09/05.[R]. Washington DC:US EPA, 2011 |
中华人民共和国环境保护部. 中国人群暴露参数手册-成人卷[M]. 北京:中国环境科学出版社, 2013:793 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB3095-2012. 环境空气质量标准[S]. 北京:中国环境科学出版社, 2016 |
徐静, 李杏茹, 张兰, 等. 北京城郊PM2.5中金属元素的污染特征及潜在生态风险评价[J]. 环境科学, 2019, 40(6):2501-2509Xu J, Li X R, Zhang L, et al. Concentration and ecological risk assessment of heavy metals in PM2.5 collected in urban and suburban areas of Beijing[J]. Environmental Science, 2019, 40(6):2501-2509(in Chinese) |
房春生, 陈分定, 陈克华, 等. 龙岩市大气颗粒物来源统计分析[J]. 中国环境科学, 2011, 31(2):214-219Fang C S, Chen F D, Chen K H, et al. Statistical analysis of atmospheric particulate matter sources in Longyan City[J]. China Environmental Science, 2011, 31(2):214-219(in Chinese) |
Hochadel M, Heinrich J, Gehring U, et al. Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information[J]. Atmospheric Environment, 2005, 40(3):542-553 |
Wang J, Guo P, Li X, et al. Source identification of lead pollution in the atmosphere of Shanghai City by analyzing single aerosol particles (SAP)[J]. American Chemical Society, 2000, 34(10):1900-1905 |
Johansson C, Norman M, Burman L. Road traffic emission factors for heavy metals[J]. Atmospheric Environment, 2008, 43(31):4681-4688 |
Srimuruganandam B, Nagendra S M S. Chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic[J]. Science of the Total Environment, 2011, 409(17):3144-3157 |
董世豪, 谢扬, 皇甫延琦, 等. 扬州市PM2.5中重金属来源及潜在健康风险评估[J]. 环境科学, 2019, 40(2):540-547Dong S H, Xie Y, Huangfu Y Q, et al. Source apportionment and heath risk quantification of heavy metals in PM2.5 in Yangzhou, China[J]. Environmental Science, 2019, 40(2):540-547(in Chinese) |
王伟, 孔少飞, 刘海彪, 等. 南京市春节前后大气PM2.5中重金属来源及健康风险评价[J]. 中国环境科学, 2016, 36(7):2186-2195Wang W, Kong S F, Liu H B, et al. Sources and risk assessment of heavy metals in PM2.5 around 2014 Spring Festival in Nanjing[J]. China Environmental Science, 2016, 36(7):2186-2195(in Chinese) |
闫广轩, 张朴真, 王晨, 等. 郑州市采暖期与非采暖期PM2.5中重金属来源及潜在健康风险评价[J]. 环境科学学报, 2019, 39(8):2811-2820Yan G X, Zhang P Z, Wang C, et al. Source apportionment and health risk assessment of heavy metals of PM2.5 in heating and non-heating period in Zhengzhou[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2811-2820(in Chinese) |
Slezakova K M S, Pereira M C. Trace metals in size-fractionated particulate matter in a Portuguese hospital:Exposure risks assessment and comparisons with other countries[J]. Environmental Science & Pollution Research, 2014, 21(5):3604-3620 |
李友平, 刘慧芳, 洪周, 等. 成都市PM2.5中有毒重金属污染特征及健康风险评价[J]. 中国环境科学, 2015, 35(7):2225-2232Li Y P, Liu H F, Hong Z, et al. Contamination characteristics and health risk assessment of toxic heavy metals in PM2.5 in Chengdu[J]. China Environmental Science, 2015, 35(7):2225-2232(in Chinese) |
Zheng N, Liu J S, Wang Q C, et al. Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China[J]. Atmospheric Environment, 2010, 44(27):3239-3245 |
Wang W T, Simonich S, Giri B, et al. Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China[J]. Science of the Total Environment, 2011, 409(15):2942-2950 |
Peng X, Shi G, Liu G, et al. Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model[J]. Environmental Pollution, 2017, 221:335-342 |