删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于生物可给性分析工业场地土壤重金属污染的人体健康风险

本站小编 Free考研考试/2021-12-30

陈奕1,2,,
1. 上海城投上境生态修复科技有限公司, 上海 200232;
2. 上海污染场地修复工程技术研究中心, 上海 200232
作者简介: 陈奕(1990-),男,硕士,工程师,研究方向为污染场地调查、风险评估及修复技术,E-mail:cheny@huanke.com.cn.
通讯作者: 陈奕,cheny@huanke.com.cn
基金项目: 上海市科委资助项目“上海污染场地修复工程技术研究中心”(18DZ2283800);上海环境集团有限公司项目“土壤和地下水原位化学氧化一体化修复技术研究”(A1HJ-HJY-0010-2018);上海环境卫生工程设计院有限公司自立项目“桃浦地下水抽提高级氧化技术实证和评估”(2017A188)


中图分类号: X171.5


Bioaccessibility and Human Health Risk Assessment of Heavy Metals in Industrial Sites

Chen Yi1,2,,
1. Shanghai Chengtou Environmental Ecological Restoration Technology Co. Ltd., Shanghai 200232, China;
2. Shanghai Contaminated Site Remediation Engineering Technology Research Center, Shanghai 200232, China
Corresponding author: Chen Yi,cheny@huanke.com.cn

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(26)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了准确评价重金属污染的工业场地土壤对人体健康的风险,利用体外胃肠法(IVG)研究了苏州一工业园区污染场地土壤中Cu、As、Sb和Ni共4种重金属的生物可给性,并评估了土壤重金属经口摄入对人体造成的健康风险。研究结果表明,在胃阶段,土壤中重金属Cu、As、Sb和Ni的生物可给性范围分别为32.145%~50.231%、27.571%~44.400%、11.241%~20.261%和27.414%~46.555%;小肠阶段,土壤中重金属Cu、As、Sb和Ni的生物可给性范围分别为16.986%~46.658%、20.726%~34.437%、3.984%~7.433%和20.968%~39.502%。体外胃肠法中,场地土壤重金属胃阶段的生物可给性均显著高于小肠阶段。综合分析4种重金属的危害商指数(HQois),其值均<1,健康风险较低。本文可为污染场地健康风险的准确评估提供重要案例和科学依据。
关键词: 重金属/
工业场地/
健康风险/
生物可给性/
体外胃肠法

Abstract:Bioaccessibility is one of the key factors in human health risk assessment. A study about the oral bioaccessibility of heavy metals (Cu, As, Sb and Ni) in soil is carried out in Suzhou Industrial Park by using the in vitro gastrointestinal method (IVG). The results show that the ranges of bioaccessibility of Cu, As, Sb and Ni in the stomach phase (Cu 32.145%~50.231%, As 27.571%~44.400%, Sb 11.241%~20.261%, Ni 27.414%~46.555%) are significantly higher than that in small intestine phase (Cu 16.986%~46.658%, As 20.726%~34.437%, Sb 3.984%~7.433%, Ni 20.968%~39.502%). The result of hazard quotient index (HQois) of these heavy metals are all under the standard value, which means there is low risk of these heavy metal in the soil to human health. This study could provide an important case study and scientific basis for human health risk assessment in industrial heavy metal polluted sites.
Key words:heavy metals/
industrial sites/
human health risk assessment/
bioaccessibility/
in vitro gastrointestinal method.

加载中
中华人民共和国国土资源部, 中华人民共和国环境保护部. 全国土壤污染状况调查公报[R]. 北京:中华人民共和国国土资源部, 中华人民共和国环境保护部, 2014
姜林. 杀虫剂类持久性有机污染物污染场地环境风险管理技术研究[M]. 北京:中国环境科学出版社, 2012:4-47 Jiang L. Technical Research on Environmental Risk Management on Contaminated Site of POPs Pesticide[M]. Beijing:China Environmental Science Press, 2012:4-47(in Chinese)
Li Q, Zhou J, Chen B, et al. Toxic metal contamination and distribution in soils and plants of a typical metallurgical industrial area in southwest of China[J]. Environmental Earth Sciences, 2014, 72(6):2101-2109
Abrahams P W. Soils:Their implications to human health[J]. Science of the Total Environment, 2002, 291(1-3):1-32
尹乃毅, 都慧丽, 张震南, 等. 应用SHIME模型研究肠道微生物对土壤中镉、铬、镍生物可给性的影响[J]. 环境科学, 2016, 37(6):2353-2358Yin N Y, Du H L, Zhang Z N, et al. Effects of human gut microbiota on bioaccessibility of soil Cd, Cr and Ni using SHIME model[J]. Environmental Science, 2016, 37(6):2353-2358(in Chinese)
Yang J K, Barnett M O, Jardine P M, et al. Adsorption, sequestration, and bioaccessibility of As(Ⅴ) in soils[J]. Environmental Science & Technology, 2002, 36(21):4562-4569
Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants[J]. Environmental Science & Technology, 2000, 34(20):4259-4265
Ruby M V, Schoof R, Brattin W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental Science & Technology, 1999, 33(21):3697-3705
United States Environmental Protection Agency (US EPA). Guidance for evaluating the oral bioavailability of metalsin soils for use in human health risk assessment, OSWER 9285. 7-80[R]. Washington DC:US EPA, 2007
Ng J C, Juhasz A L, Smithe E, et al. Contaminant bioavailability and bioaccessibility, guidance for industry[R]. London:Cooperative Research Center for Contamination Assessment and Remediation of the Environment, 2009
Latawiec A E, Simmons P, Reid B J. Decision-makers' perspectives on the use of bioaccessibility for risk-based regulation of contaminated land[J]. Environment International, 2010, 36(4):383-389
Wragg J, Cave M R. In vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils:A critical review[R]. Bristol:Environment Agency, 2003
崔岩山, 陈晓晨, 付瑾. 污染土壤中铅、砷的生物可给性研究进展[J]. 生态环境学报, 2010, 19(2):480-486Cui Y S, Chen X C, Fu J. Progress in study of bioaccessibility of lead and arsenic in contaminated soils[J]. Ecology and Environmental Sciences, 2010, 19(2):480-486(in Chinese)
鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000:12-21 Lu R K. Analytical Methods for Soil and Agricultural Chemistry[M]. Beijing:Agriculture Science and Technology Press of China, 2000:12-21(in Chinese)
鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000:25-35 Bao S D. Soil Agricultural Chemistry Analysis[M]. Beijing:China Agricultural Press, 2000:25-35(in Chinese)
Blott S J, Pye K. Particle size distribution analysis of sand-sized particles by laser diffraction:An experimental investigation of instrument sensitivity and the effects of particle shape[J]. Sedimentology, 2006, 53(3):671-685
中华人民共和国环境保护部. HJ 25. 3-2014污染场地风险评估技术导则[S]. 北京:中华人民共和国环境保护部, 2014 Ministry of Environmental Protection of the Peoples' Republic of China. HJ 25. 3-2014.Guidelines for risk assessment of contaminated sites[S]. Beijing:Ministry of Environmental Protection the Peoples' Republic of China, 2014(in Chinese)
李仪, 章明奎. 三种模拟消化液对土壤重金属的提取性比较[J]. 中国环境科学, 2012, 32(10):1807-1813Li Y, Zhang M K. Comparison of soil heavy metals extraction using three in-vitro digestion tests[J]. China Environmental Science, 2012, 32(10):1807-1813(in Chinese)
Morrison A L, Gulson B L. Preliminary findings of chemistry and bioaccessibility in base metal smelter slags[J]. Science of the Total Environment, 2007, 382(1):30-42
Palmer S, Cox S F, Mckinley J M, et al. Soil-geochemical factors controlling the distribution and oral bioaccessibility of nickel, vanadium and chromium in soil[J]. Applied Geochemistry, 2014, 51:255-267
Vasiluk L, Dutton M D, Hale B. In vitro estimates of bioaccessible nickel in field-contaminated soils, and comparison with in vivo measurement of bioavailability and identification of mineralogy[J]. Science of the Total Environment, 2011, 409(14):2700-2706
Juhasz A L, Weber J, Smith E, et al. Assessment of four commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo relative arsenic bioavailability in contaminated soils[J]. Environmental Science & Technology, 2009, 43(24):9487-9494
Poggio L, Vrscaj B, Schulin R, et al. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy)[J]. Environmental Pollution, 2009, 157(2):680-689
Pouschat P, Zagury G J. In vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles[J]. Environmental Science & Technology, 2006, 40(13):4317-4323
Liu Y, Ma J, Yan H, et a1. Bioaccessibility and health risk assessment of arsenic in soil and indoor dust in rural and urban areas of Hubei Province, China[J]. Ecotoxicology and Environmental Safety, 2015, 126:14-22
李继宁, 魏源, 赵龙, 等. 锑矿区土壤重金属生物可给性及人体健康风险评估[J]. 环境工程技术学报, 2014, 4(5):412-420Li J N, Wei Y, Zhao L, et al. Bioaccessibility and human health risk assessment of heavy metals in soils of antimony mine area[J]. Journal of Environmental Engineering Technology, 2014, 4(5):412-420(in Chinese)

相关话题/土壤 污染 生物 上海 健康