王学东1,,,
李菊梅2,
马义兵3
1. 首都师范大学资源环境与旅游学院, 北京 100048;
2. 中国农业科学院农业资源与农业区划研究所, 北京 100081;
3. 澳门科技大学澳门环境研究院, 澳门 999078
作者简介: 郭煊(1994-),男,硕士研究生,研究方向为重金属生态毒理学,E-mail:674336687@qq.com.
通讯作者: 王学东,xdwang@cnu.edu.cn ;
基金项目: 国家自然科学基金资助项目(41877496)中图分类号: X171.5
Effect of Different pH Values on the Toxicity of Antimony (V) to Barley Root Elongation and the Construction of Biotic Ligand Model
Guo Xuan1,Wang Xuedong1,,,
Li Jumei2,
Ma Yibing3
1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China;
2. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
3. Macau Environmental Research Institute, Macau University of Science and Technology, Macau 999078, China
Corresponding author: Wang Xuedong,xdwang@cnu.edu.cn ;
CLC number: X171.5
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:随工矿业发展,越来越多的锑(Sb)元素进入到环境中,因此了解Sb的毒性及生态风险至关重要。本文利用溶液模拟实验,设置了9个pH梯度,研究了不同pH梯度下Sb(Ⅴ)的形态变化及其植物毒性。研究结果表明,pH在4.5~8.5的范围内,Sb(Ⅴ)在溶液中主要以Sb(OH)6-和Sb(OH)5 2种形态存在,其中Sb(OH)6-始终占总Sb(Ⅴ)的97%以上。pH在4.5~6.5时,以大麦根伸长表示的EC50(Sb(OH)6-)(EC50为大麦根伸长被抑制50%时Sb(Ⅴ)的剂量)随着OH-活度的增加而增加,且与OH-具有显著的线性关系(r2=0.93、P<0.01),但当pH在7.0~8.5之间,不同pH梯度的EC50(Sb(OH)6-)没有显著差异,而EC50(Sb(OH)5)在整个pH范围内(pH=4.5~8.5)随着pH升高而下降。Sb形态与pH线性分析表明,Sb(OH)5和Sb(OH)6-均具有毒性,但随pH升高,Sb(OH)5的活度占比降低。基于BLM方程计算得出Sb(OH)6-、Sb(OH)5与生物配体的络合平衡常数,分别为lgKSb(OH)6BL=1.34、lgKSb(OH)5BL=3.08。变量的灵敏性分析也表明大麦根长对Sb(OH)5的响应最敏感。基于所得络合平衡常数的BLM能够较好地预测Sb(Ⅴ)对大麦的毒性。
关键词: 锑/
大麦根伸长/
生物配体模型/
pH值
Abstract:With the development of industry and mining, more and more antimony (Sb) compounds have entered the environment, so it is important to understand the toxicity and ecological risk of Sb. In the present study, nine pH gradients were set up to study the speciation distribution of Sb(Ⅴ) and the effect of pH on Sb(Ⅴ) toxicity to barley root elongation by solution simulation experiment. The results showed that in the pH range of 4.5 to 8.5, there were mainly Sb(OH)6- and Sb(OH)5 species in the solution, in which Sb(OH)6- accounted for more than 97% of the total Sb(Ⅴ). In the pH range of 4.5 to 6.5, Sb(OH)6- (The Sb(OH)6- activity that results in 50% of barley root elongation with respect to the control) increased with increasing OH- activity and it showed a significantly linear relation between them (r2=0.93, P<0.01). However, there were no significantly differences of EC50(Sb(OH)6-) in the pH range of 7.0 to 8.5. EC50(Sb(OH)5) decreased with increasing pH in the range of 4.5 to 8.5. According to biotic ligand model (BLM) theory, the relationship between Sb species and pH were analyzed. It was showed that the Sb(OH)5 was the most dominant toxic species of Sb(Ⅴ). However, Sb(Ⅴ) toxicity to barley root elogation decreased with the increasing of pH due to the decrease of Sb(OH)5 concentration in the solution. Finally, the conditional binding constants for Sb(OH)6- and Sb(OH)5 binding with biotic ligand were obtained:lgKSb(OH)6BL=1.34, lgKSb(OH)5BL=3.08. Based on the sensitivity analysis of each variable, barley root was most sensitive to Sb(OH)5. The BLM based on the obtained conditional binding constants in the present study successfully predicted the toxicity of Sb (V) to barley.
Key words:antimony/
barley root elongation/
biotic ligand model (BLM)/
pH.
何孟常, 万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展, 2004, 16(1):131-135He M C, Wan H Y. Distribution, speciation, toxicity and bioavailability of antimony in the environment[J]. Progress in Chemistry, 2004, 16(1):131-135(in Chinese) |
U.S. Geological Survey (USGS). 2016 Minerals yearbook antimony (advance release)[R]//U.S. Geological Survey. Mineral Commodity Summaries.:USGS, 2019 |
He M C, Wang N N, Long X J, et al. Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences, 2019, 75:14-39 |
Zhou J W, Nyirenda M T, Xie L N, et al. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan mine, China[J]. Applied Geochemistry, 2017, 77:52-61 |
Qi C C, Liu G J, Kang Y, et al. Assessment and distribution of antimony in soils around three coal mines, Anhui, China[J]. Journal of the Air & Waste Management Association, 2011, 61(8):850-857 |
林祥龙, 孙在金, 马瑾, 等. 不同形态锑对土壤白符跳(Folsomia candida)的毒性差异[J]. 农业环境科学学报, 2017, 36(4):657-664Lin X L, Sun Z J, Ma J, et al. Toxicity differences of different forms of antimony to soil-dwelling springtail(Folsomia candida)[J]. Journal of Agro-Environment Science, 2017, 36(4):657-664(in Chinese) |
黄丽春, 石重光, 陈家玉. 三氧化二锑小鼠急性毒性实验研究[J]. 职业卫生与病伤, 1996, 11(3):170-171Huang L C, Shi C G, Chen J Y. Experimental study on acute toxicity of antimony trioxide in mice[J].Occupational Health and Damage, 1996, 11(3):170-171(in Chinese) |
何孟常, 谢南岳. 土壤中锑对水稻的污染及改良措施[J]. 湖南农学院学报, 1994(1):47-51 He M C, Xie N Y. Study of the rice pollution and amendment of antimony in soils[J]. Journal of Hunan Agricultural University, 1994(1):47-51(in Chinese) |
Feng R W, Wei C Y, Tu S X, et al. Antimony accumulation and antioxidative responses in four fern plants[J]. Plant and Soil, 2008, 317(1-2):93-101 |
Shtangeeva I, Bali R, Harris A. Bioavailability and toxicity of antimony[J]. Journal of Geochemical Exploration, 2011, 110(1):40-45 |
戈兆凤, 韦朝阳. 锑环境健康效应的研究进展[J]. 环境与健康杂志, 2011, 28(7):649-653Ge Z F, Wei C Y. Environmental health effect of antimony:A review of recent researches[J]. Journal of Environment and Health, 2011, 28(7):649-653(in Chinese) |
Mitsunobu S, Harada T, Takahashi Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions[J]. Environmental Science & Technology, 2006, 40(23):7270-7276 |
Okkenhaug G, Zhu Y G, Luo L, et al. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area[J]. Environmental Pollution, 2011, 159(10):2427-2434 |
Cai Y B, Mi Y T, Zhang H. Kinetic modeling of antimony(Ⅲ) oxidation and sorption in soils[J]. Journal of Hazardous Materials, 2016, 316:102-109 |
Wilson S C, Lockwood P V, Ashley P M, et al. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J]. Environmental Pollution, 2010, 158(5):1169-1181 |
Li B, Zhang X, Wang X D, et al. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture[J]. Ecotoxicology and Environmental Safety, 2009, 72(6):1760-1766 |
Song N N, Ma Y B. The toxicity of HCrO4- and CrO42- to barley root elongation in solution culture:pH effect and modelling[J]. Chemosphere, 2017, 171:537-543 |
Wang X D, Hua L, Ma Y B. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare):Influence of calcium, magnesium, sodium, potassium and pH[J]. Chemosphere, 2012, 89(1):89-95 |
Weng L P, Wolthoorn A, Lexmond T M, et al. Understanding the effects of soil characteristics on phytotoxicity and bioavailability of nickel using speciation models[J]. Environmental Science & Technology, 2004, 38(1):156-162 |
Crémazy A, Campbell P G, Fortin C. The biotic ligand model can successfully predict the uptake of a trivalent ion by a unicellular alga below pH 6.50 but not above:Possible role of hydroxo-species[J]. Environmental Science & Technology, 2013, 47(5):2408-2415 |
Wang X D, Wu M Y, Ma J X, et al. Modeling of acute cadmium toxicity in solution to barley root elongation using biotic ligand model theory[J]. Journal of Environmental Sciences, 2016, 42:112-118 |
张璇, 华珞, 王学东, 等. 不同pH值条件下镍对大麦的急性毒性[J]. 中国环境科学, 2008, 28(7):640-645Zhang X, Hua L, Wang X D, et al. Effect of pH on nickel acute toxicity to barley (Hordeum vulgare)[J]. China Environmental Science, 2008, 28(7):640-645(in Chinese) |
Lock K, Criel P, De Schamphelaere K A, et al. Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare)[J]. Ecotoxicology and Environmental Safety, 2007, 68(2):299-304 |
International Organization for Standardization (ISO). Soil quality-Determination of the effects of pollutants on soil flora-Part 1:Method for the measurement of inhibition of root growth. ISO 11269-1, Geneva:ISO, 1993 |
Haanstra L, Doelman P, Oude Voshaar J H. The use of sigmoidal dose response curves in soil ecotoxicological research[J]. Plant and Soil, 1985, 84(2):293-297 |
Thakali S, Allen H E, di Toro D M, et al. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils[J]. Environmental Science & Technology, 2006, 40(22):7085-7093 |
Buschmann J, Sigg L. Antimony(Ⅲ) binding to humic substances:Influence of pH and type of humic acid[J]. Environmental Science & Technology, 2004, 38(17):4535-4541 |
Wang X D, Li B, Ma Y B, et al. Development of a biotic ligand model for acute zinc toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2010, 73(6):1272-1278 |
Jo H J, Son J, Cho K, et al. Combined effects of water quality parameters on mixture toxicity of copper and chromium toward Daphnia magna[J]. Chemosphere, 2010, 81(10):1301-1307 |