删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

环境胞外胞内DNA的行为归趋及生态功能研究进展

本站小编 Free考研考试/2021-12-30

张忠云1,2,
叶茂1,,,
孙明明3,
黄丹1,2,
张胜田4,
胡锋3,
蒋新1
1. 中国科学院南京土壤研究所, 中国科学院土壤环境与污染修复重点实验室, 南京 210008;
2. 中国科学院大学, 北京 100049;
3. 南京农业大学, 资源与环境科学学院土壤生态实验室, 南京 210095;
4. 生态环境部南京环境科学研究所, 土壤污染防治研究中心, 南京 210042
作者简介: 张忠云(1994-),女,博士研究生,研究方向为环境分子毒理学,E-mail:zyzhang@issas.ac.cn.
通讯作者: 叶茂,yemao@issas.ac.cn ;
基金项目: 国家重点研发计划资助项目(2018FYC1803100);国家青年人才托举项目(2018QNRC001);国家自然科学基金面上项目(41771350);江苏省优秀青年基金资助项目(BK20180110)


中图分类号: X171.5


Review of Extracellular and Intracellular DNA Environmental Behavior and Ecological Function

Zhang Zhongyun1,2,
Ye Mao1,,,
Sun Mingming3,
Huang Dan1,2,
Zhang Shengtian4,
Hu Feng3,
Jiang Xin1
1. CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China;
4. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Research Center for Soil Pollution Prevention and Control, Nanjing 210042, China
Corresponding author: Ye Mao,yemao@issas.ac.cn ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(98)
相关文章
施引文献
资源附件(0)
访问统计

摘要:胞外DNA(extracellular DNA,extDNA)和胞内DNA(intracellular DNA,intDNA)广泛存在于陆生和水生生态环境系统中,密切参与环境-微生物和微生物种间的吸附、降解和自然转化等过程,在物质循环和基因信息传递中发挥重要的生态学作用。胞外DNA在环境中不易受核酸酶攻击,相对稳定,可作为历史微生物基因库,与胞内DNA都可反映功能基因丰度及其对应微生物活性;同时,胞外DNA是细胞生物膜中的重要组分,在微生物细胞抵御抗生素、重金属和农药等外来污染物胁迫中发挥了重要作用。本文从ext/intDNA环境行为、extDNA在生物膜中的环境作用、物质信息传递和ext/intDNA生态学功能等角度,综述了环境ext/intDNA的行为归趋及生态功能研究进展,提出了现阶段研究不足,并对未来研究方向进行了展望。本综述可为深入理解环境ext/intDNA的生态功能作用机制提供新的科学认知。
关键词: 胞外DNA/
胞内DNA/
功能基因/
宏基因组学/
生态功能

Abstract:Extracellular DNA (extDNA) and intracellular DNA (intDNA) extensively exist in both terrestrial and aquatic environment systems, and have been found to play a significant role in the nutrient cycling and genetic information transmission between the environment and microorganisms. As inert DNA sequences, extDNA is able to present stably in the environment from the ribosome enzyme lysis, therein act as the historian genetic information archive of the microorganisms. As a consequence, both extDNA and intDNA can shed light on the functional gene variety and the corresponding microbial activity. In addition, extDNA is a ubiquitous composition of cell membrane, which exerts great impact on the resistance of outer stress from environmental pollutants, such as heavy metals, antibiotics, and pesticides, etc. This review focuses on the environmental fate and the ecological functions of the extDNA and intDNA from the perspectives of environmental behavior, genetic information transmission, and resistance to the environmental contaminants, etc. By reviewing the status quo and the future vista of the ext/intDNAs research, this article shed light on the exploring ecological functioning of the ext/intDNAs in the environment.
Key words:extracellular DNA/
intracellular DNA/
functional gene/
metagenomics/
ecological function.

加载中
Levy-Booth D J, Campbell R G, Gulden R H, et al. Cycling of extracellular DNA in the soil environment[J]. Soil Biology and Biochemistry, 2007, 39(12):2977-2991
Pietramellara G, Ascher J, Borgogni F, et al. Extracellular DNA in soil and sediment:Fate and ecological relevance[J]. Biology and Fertility of Soils, 2009, 45(3):219-235
DeFrancesco A S, Masloboeva N, Syed A K, et al. Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29):E5969-E5978
Wang F, Che R X, Xu Z H, et al. Assessing soil extracellular DNA decomposition dynamics through plasmid amendment coupled with real-time PCR[J]. Journal of Soils and Sediments, 2019, 19(1):91-96
Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633
Choi J J, Reich C F 3rd, Pisetsky D S. The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells[J]. Immunology, 2005, 115(1):55-62
Nagler M, Podmirseg S M, Griffith G W, et al. The use of extracellular DNA as a proxy for specific microbial activity[J]. Applied Microbiology and Biotechnology, 2018, 102(6):2885-2898
Yuan Q B, Huang Y M, Wu W B, et al. Redistribution of intracellular and extracellular free & adsorbed antibiotic resistance genes through a wastewater treatment plant by an enhanced extracellular DNA extraction method with magnetic beads[J]. Environment International, 2019, 131:104986
Morrissey E M, McHugh T A, Preteska L, et al. Dynamics of extracellular DNA decomposition and bacterial community composition in soil[J]. Soil Biology and Biochemistry, 2015, 86:42-49
Sutherland I W. The biofilm matrix-An immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9(5):222-227
Pietramellara G, Ceccherini M T, Ascher J, et al. Persistence of transgenic and not transgenic extracellular DNA in soil and bacterial transformation[J]. Rivista Di Biologia, 2006, 99(1):37-68
Zawadzki P, Cohan F M. The size and continuity of DNA segments integrated in Bacillus transformation[J]. Genetics, 1995, 141(4):1231-1243
Mao D Q, Luo Y, Mathieu J, et al. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation[J]. Environmental Science & Technology, 2014, 48(1):71-78
Ranjard L, Richaume A. Quantitative and qualitative microscale distribution of bacteria in soil[J]. Research in Microbiology, 2001, 152(8):707-716
Vlassov V V, Laktionov P P, Rykova E Y. Extracellular nucleic acids[J]. BioEssays, 2017, 29:654-667
Corinaldesi C, Beolchini F, Dell'Anno A. Damage and degradation rates of extracellular DNA in marine sediments:Implications for the preservation of gene sequences[J]. Molecular Ecology, 2008, 17(17):3939-3951
Dell'Anno A, Danovaro R. Extracellular DNA plays a key role in deep-sea ecosystem functioning[J]. Science, 2005, 309(5744):2179
Lennon J T, Muscarella M E, Placella S A, et al. How, when, and where relic DNA affects microbial diversity[J]. mBio, 2018, 9(3):e00618-e00637
Corinaldesi C, Barucca M, Luna G M, et al. Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments[J]. Molecular Ecology, 2011, 20(3):642-654
Ramírez G A, Jørgensen S L, Zhao R, et al. Minimal influence of extracellular DNA on molecular surveys of marine sedimentary communities[J]. Frontiers in Microbiology, 2018, 9:2969
Steinberger R E, Holden P A. Extracellular DNA in single- and multiple-species unsaturated biofilms[J]. Applied and Environmental Microbiology, 2005, 71(9):5404-5410
Whitchurch C B, Tolker-Nielsen T, Ragas P C, et al. Extracellular DNA required for bacterial biofilm formation[J]. Science, 2002, 295(5559):1487
Torti A, Jørgensen B B, Lever M A. Preservation of microbial DNA in marine sediments:Insights from extracellular DNA pools[J]. Environmental Microbiology, 2018, 20(12):4526-4542
Guo X P, Yang Y, Lu D P, et al. Biofilms as a sink for antibiotic resistance genes (ARGs) in the Yangtze Estuary[J]. Water Research, 2018, 129:277-286
Zhang Y, Li A L, Dai T J, et al. Cell-free DNA:A neglected source for antibiotic resistance genes spreading from WWTPs[J]. Environmental Science & Technology, 2018, 52(1):248-257
Dell'Anno A, Corinaldesi C. Degradation and turnover of extracellular DNA in marine sediments:Ecological and methodological considerations[J]. Applied and Environmental Microbiology, 2004, 70(7):4384-4386
Corinaldesi C, Danovaro R, Dell'Anno A. Simultaneous recovery of extracellular and intracellular DNA suitable for molecular studies from marine sediments[J]. Applied and Environmental Microbiology, 2005, 71(1):46-50
Aardema B W, Lorenz M G, Krumbein W E. Protection of sediment-adsorbed transforming DNA against enzymatic inactivation[J]. Applied and Environmental Microbiology, 1983, 46(2):417-420
Dell'Anno A, Stefano B, Danovaro R. Quantification, base composition, and fate of extracellular DNA in marine sediments[J]. Limnology and Oceanography, 2002, 47(3):899-905
Corinaldesi C, Beolchini F, Dell'Anno A. Damage and degradation rates of extracellular DNA in marine sediments:Implications for the preservation of gene sequences[J]. Molecular Ecology, 2008, 17(17):3939-3951
Nielsen K M, Johnsen P J, Bensasson D, et al. Release and persistence of extracellular DNA in the environment[J]. Environmental Biosafety Research, 2007, 6(1-2):37-53
Carini P, Marsden P J, Leff J W, et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity[J]. Nature Microbiology, 2016, 2(3):1-6
Gustave W, Yuan Z F, Sekar R, et al. Relic DNA does not obscure the microbial community of paddy soil microbial fuel cells[J]. Research in Microbiology, 2019, 170(2):97-104
Dong P Y, Wang H, Fang T T, et al. Assessment of extracellular antibiotic resistance genes (eARGs) in typical environmental samples and the transforming ability of eARG[J]. Environment International, 2019, 125:90-96
Agnelli A, Ascher J, Corti G, et al. Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA[J]. Soil Biology and Biochemistry, 2004, 36(5):859-868
Zhang Y P, Snow D D, Parker D, et al. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures[J]. Environmental Science & Technology, 2013, 47(18):10206-10213
Corinaldesi C, Tangherlini M, Manea E, et al. Extracellular DNA as a genetic recorder of microbial diversity in benthic deep-sea ecosystems[J]. Scientific Reports, 2018, 8(1):1839
Bailiff M D, Karl D M. Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986-1987[J]. Deep Sea Research Part A Oceanographic Research Papers, 1991, 38(8-9):1077-1095
Siuda W, Chróst R J, Güde H. Distribution and origin of dissolved DNA in lakes of different trophic states[J]. Aquatic Microbial Ecology, 1998, 15(1):89-96
Siuda W, Chróst R J. Concentration and susceptibility of dissolved DNA for enzyme degradation in lake water-some methodological remarks[J]. Aquatic Microbial Ecology, 2000, 21:195-201
Blagodatskaya E V, Blagodatskii S A, Anderson T H. Quantitative isolation of microbial DNA from different types of soils of natural and agricultural ecosystems[J]. Microbiology, 2003, 72(6):744-749
England L S, Pollok J, Vincent M, et al. Persistence of extracellular baculoviral DNA in aquatic microcosms:Extraction, purification, and amplification by the polymerase chain reaction (PCR)[J]. Molecular and Cellular Probes, 2005, 19(2):75-80
Niemeyer J, Gessler F. Determination of free DNA in soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(2):121
Vuillemin A, Horn F, Alawi M, et al. Preservation and significance of extracellular DNA in ferruginous sediments from Lake Towuti, Indonesia[J]. Frontiers in Microbiology, 2017, 8:1440
Xue J, Feng Y. Determination of adsorption and desorption of DNA molecules on freshwater and marine sediments[J]. Journal of Applied Microbiology, 2018, 124(6):1480-1492
Demanèche S, Jocteur-Monrozier L, Quiquampoix H, et al. Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA[J]. Applied and Environmental Microbiology, 2001, 67(1):293-299
Blum S A E, Lorenz M G, Wackernagel W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils[J]. Systematic and Applied Microbiology, 1997, 20(4):513-521
Crecchio C, Stotzky G. Binding of DNA on humic acids:Effect on transformation of Bacillus subtilis and resistance to DNase[J]. Soil Biology and Biochemistry, 1998, 30(8-9):1061-1067
Pietramellara G, Franchi M, Gallori E, et al. Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite[J]. Biology and Fertility of Soils, 2001, 33(5):402-409
Khanna M, Stotzky G. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA[J]. Applied and Environmental Microbiology, 1992, 58(6):1930-1939
Hou Y K, Wu P X, Zhu N W. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury[J]. Chemosphere, 2014, 95:206-212
Franchi M, Bramanti E, Bonzi L M, et al. Clay-nucleic acid complexes:Characteristics and implications for the preservation of genetic material in primeval habitats[J]. Origins of Life and Evolution of the Biosphere, 1999, 29(3):297-315
Cai P, Huang Q, Zhang X, et al. Adsorption of DNA on clay minerals and various colloidal particles from an Alfisol[J]. Soil Biology and Biochemistry, 2006, 38(3):471-476
Gardner C M, Gunsch C K. Adsorption capacity of multiple DNA sources to clay minerals and environmental soil matrices less than previously estimated[J]. Chemosphere, 2017, 175:45-51
Sirois S H, Buckley D H. Factors governing extracellular DNA degradation dynamics in soil[J]. Environmental Microbiology Reports, 2019, 11(2):173-184
Gulden R H, Lerat S, Hart M M, et al. Quantitation of transgenic plant DNA in leachate water:Real-time polymerase chain reaction analysis[J]. Journal of Agricultural and Food Chemistry, 2005, 53(15):5858-5865
Henriksen T M, Breland T A. Decomposition of crop residues in the field:Evaluation of a simulation model developed from microcosm studies[J]. Soil Biology and Biochemistry, 1999, 31(10):1423-1434
Thomas C M, Nielsen K M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria[J]. Nature Reviews Microbiology, 2005, 3(9):711-721
de Vries J, Wackernagel W. Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(4):2094-2099
Nielsen K M, van Elsas J D. Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil[J]. Soil Biology and Biochemistry, 2001, 33(3):345-357
Iwaki M, Arakawa Y. Transformation of Acinetobacter sp. BD413 with DNA from commercially available genetically modified potato and papaya[J]. Letters in Applied Microbiology, 2006, 43(2):215-221
Nielsen K M, van Elsas J D, Smalla K. Transformation of Acinetobacter sp. strain BD413(pFG4ΔnptⅡ) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants[J]. Applied and Environmental Microbiology, 2000, 66(3):1237-1242
Flury M, Flühler H, Jury W A, et al. Susceptibility of soils to preferential flow of water:A field study[J]. Water Resources Research, 1994, 30(7):1945-1954
Bundt M, Widmer F, Pesaro M, et al. Preferential flow paths:Biological ‘hot spots’ in soils[J]. Soil Biology and Biochemistry, 2001, 33(6):729-738
Gloag E S, Turnbull L, Huang A, et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28):11541-11546
Pammi M, Liang R, Hicks J, et al. Biofilm extracellular DNA enhances mixed species biofilms of Staphylococcus epidermidis and Candida albicans[J]. BMC Microbiology, 2013, 13:257
Böckelmann U, Janke A, Kuhn R, et al. Bacterial extracellular DNA forming a defined network-like structure[J]. FEMS Microbiology Letters, 2006, 262(1):31-38
Mah T F C, O'Toole G A. Mechanisms of biofilm resistance to antimicrobial agents[J]. Trends in Microbiology, 2001, 9(1):34-39
Okshevsky M, Meyer R L. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms[J]. Critical Reviews in Microbiology, 2015, 41(3):341-352
Das T, Sharma P K, Busscher H J, et al. Role of extracellular DNA in initial bacterial adhesion and surface aggregation[J]. Applied and Environmental Microbiology, 2010, 76(10):3405-3408
Sutherland I. Biofilm exopolysaccharides:A strong and sticky framework[J]. Microbiology, 2001, 147(Pt 1):3-9
Mulcahy H, Charron-Mazenod L, Lewenza S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms[J]. PLoS Pathogens, 2008, 4(11):e1000213
Dominiak D M, Nielsen J L, Nielsen P H. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms[J]. Environmental Microbiology, 2011, 13(3):710-721
Allesen-Holm M, Barken K B, Yang L, et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms[J]. Molecular Microbiology, 2006, 59(4):1114-1128
Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa[J]. PLoS One, 2012, 7(10):e46718
Whitchurch C B, Tolker-Nielsen T, Ragas P C, et al. Extracellular DNA required for bacterial biofilm formation[J]. Science, 2002, 295(5559):1487
Montanaro L, Poggi A, Visai L, et al. Extracellular DNA in biofilms[J]. The International Journal of Artificial Organs, 2011, 34(9):824-831
Chiang W C, Nilsson M, Jensen P Ø, et al. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms[J]. Antimicrobial Agents and Chemotherapy, 2013, 57(5):2352-2361
Moscoso M, García E, López R. Biofilm formation by Streptococcus pneumoniae:Role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion[J]. Journal of Bacteriology, 2006, 188(22):7785-7795
Izano E A, Amarante M A, Kher W B, et al. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms[J]. Applied and Environmental Microbiology, 2008, 74(2):470-476
Qin Z Q, Ou Y Z, Yang L, et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis[J]. Microbiology, 2007, 153(Pt 7):2083-2092
Doroshenko N, Tseng B S, Howlin R P, et al. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(12):7273-7282
Gómez-Brandón M, Ascher-Jenull J, Bardelli T, et al. Ground cover and slope exposure effects on micro- and mesobiota in forest soils[J]. Ecological Indicators, 2017, 80:174-185
Turner B L, Baxter R, Mahieu N, et al. Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula pubescens)-tundra ecotone[J]. Soil Biology and Biochemistry, 2004, 36(5):815-823
Turner B L, Newman S. Phosphorus cycling in wetland soils:The importance of phosphate diesters[J]. Journal of Environmental Quality, 2005, 34(5):1921-1929
Sakcham B, Kumar A, Cao B. Extracellular DNA in monochloraminated drinking water and its influence on DNA-based profiling of a microbial community[J]. Environmental Science & Technology Letters, 2019, 6(5):306-312
Guardiola M, Uriz M J, Taberlet P, et al. Deep-sea, deep-sequencing:Metabarcoding extracellular DNA from sediments of marine canyons[J]. PLoS One, 2015, 10(10):e0139633
Vorkapic D, Pressler K, Schild S. Multifaceted roles of extracellular DNA in bacterial physiology[J]. Current Genetics, 2016, 62(1):71-79
Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
Liu S S, Qu H M, Yang D, et al. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant[J]. Water Research, 2018, 136:131-136
Czekalski N, Sigdel R, Birtel J, et al. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes[J]. Environment International, 2015, 81:45-55
Luo Y, Mao D Q, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China[J]. Environmental Science & Technology, 2010, 44(19):7220-7225
Wang D N, Liu L, Qiu Z G, et al. A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water[J]. Water Research, 2016, 92:188-198
Zhang Y P, Niu Z G, Zhang Y, et al. Occurrence of intracellular and extracellular antibiotic resistance genes in coastal areas of Bohai Bay (China) and the factors affecting them[J]. Environmental Pollution, 2018, 236:126-136
Lorenz M G, Wackernagel W. Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA[J]. Archives of Microbiology, 1990, 154(4):380-385
Lorenz M G, Aardema B W, Wackernagel W. Highly efficient genetic transformation of Bacillus subtilis attached to sand grains[J]. Journal of General Microbiology, 1988, 134(1):107-112
Liang Z B, Keeley A. Filtration recovery of extracellular DNA from environmental water samples[J]. Environmental Science & Technology, 2013, 47(16):9324-9331
Wen F S, White G J, VanEtten H D, et al. Extracellular DNA is required for root tip resistance to fungal infection[J]. Plant Physiology, 2009, 151(2):820-829

相关话题/环境 微生物 生态 基因 物质